A multidimensional Hilbert-type integral inequality

被引:0
作者
Zhenxiao Huang
Bicheng Yang
机构
[1] Basic Education College of Zhanjiang Normal University,Department of Mathematics
[2] Guangdong University of Education,undefined
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Hilbert-type integral inequality; weight function; equivalent form; Hilbert-type integral operator; gamma function; 26D15; 47A07; 37A10;
D O I
暂无
中图分类号
学科分类号
摘要
By applying the method of weight functions and the technique of real analysis, a multidimensional Hilbert-type integral inequality with multi-parameters and the best possible constant factor related to the gamma function is given. The equivalent forms and the reverses are obtained. We also consider the operator expressions and a few particular results related to the kernels of non-homogeneous and homogeneous.
引用
收藏
相关论文
共 30 条
[1]  
Yang BC(1998)On Hilbert’s integral inequality J. Math. Anal. Appl. 220 778-785
[2]  
Hong Y(2006)On multiple Hardy-Hilbert integral inequalities with some parameters J. Inequal. Appl. 2006 259-272
[3]  
Yang BC(2005)Generalization of Hilbert and Hardy-Hilbert integral inequalities Math. Inequal. Appl. 8 315-331
[4]  
Brnetić I(2005)Hilbert’s inequalities and their reverses Publ. Math. (Debr.) 67 625-658
[5]  
Krnić M(2003)On the way of weight coefficient and research for Hilbert-type inequalities Math. Inequal. Appl. 6 100-110
[6]  
Pečarić JE(2010)On a Hilbert-type integral inequality in the subinterval and its operator expression Banach J. Math. Anal. 4 95-103
[7]  
Krnić M(2009)On some extensions of Hardy-Hilbert’s inequality and applications J. Inequal. Appl. 2009 223-243
[8]  
Pečarić JE(2006)Best constant for certain multilinear integral operator J. Inequal. Appl. 2006 263-277
[9]  
Yang BC(2007)On Hilbert’s type inequalities on the weighted Orlicz spaces Pac. J. Appl. Math. 1 75-93
[10]  
Rassias TM(2005)On Hardy-Hilbert integral inequalities with some parameters J. Inequal. Pure Appl. Math. 6 267-277