Semi-parametric bivariate polychotomous ordinal regression

被引:0
|
作者
Francesco Donat
Giampiero Marra
机构
[1] University College London,Department of Statistical Science
来源
Statistics and Computing | 2017年 / 27卷
关键词
Alcohol (mis)use; Bivariate systems of equations; Ordinal responses; Penalized GLM; Regression splines;
D O I
暂无
中图分类号
学科分类号
摘要
A pair of polychotomous random variables (Y1,Y2)⊤=:Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y_1,Y_2)^\top =:{\varvec{Y}}$$\end{document}, where each Yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document} has a totally ordered support, is studied within a penalized generalized linear model framework. We deal with a triangular generating process for Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{Y}}$$\end{document}, a structure that has been employed in the literature to control for the presence of residual confounding. Differently from previous works, however, the proposed model allows for a semi-parametric estimation of the covariate-response relationships. In this way, the risk of model mis-specification stemming from the imposition of fixed-order polynomial functional forms is also reduced. The proposed estimation methods and related inferential results are finally applied to study the effect of education on alcohol consumption among young adults in the UK.
引用
收藏
页码:283 / 299
页数:16
相关论文
共 50 条
  • [1] Semi-parametric bivariate polychotomous ordinal regression
    Donat, Francesco
    Marra, Giampiero
    STATISTICS AND COMPUTING, 2017, 27 (01) : 283 - 299
  • [2] Bivariate Semi-Parametric Model: Bayesian Inference
    Debashis Samanta
    Debasis Kundu
    Methodology and Computing in Applied Probability, 2023, 25
  • [3] Bivariate Semi-Parametric Model: Bayesian Inference
    Samanta, Debashis
    Kundu, Debasis
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (04)
  • [4] Absolutely Continuous Semi-parametric Bivariate Distributions
    Samanta, Debashis
    Kundu, Debasis
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2025,
  • [5] Semi-parametric area under the curve regression method for diagnostic studies with ordinal data
    Rajan, Kumar B.
    Zhou, Xiao-Hua
    BIOMETRICAL JOURNAL, 2012, 54 (01) : 143 - 156
  • [6] A Bayesian semi-parametric approach to the ordinal calibration problem
    Paz Casanova, Maria
    Orellana, Yasna
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (22) : 6596 - 6610
  • [7] Semi-parametric additive constrained regression
    Meyer, Mary C.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (03) : 715 - 730
  • [8] A semi-parametric stochastic generator for bivariate extreme events
    Marcon, Giulia
    Naveau, Philippe
    Padoan, Simone
    STAT, 2017, 6 (01): : 184 - 201
  • [9] Semi-parametric inference in a bivariate (multivariate) mixture model
    Leung, DHY
    Qin, J
    STATISTICA SINICA, 2006, 16 (01) : 153 - 163
  • [10] A Bayesian semi-parametric bivariate failure time model
    Nieto-Barajas, Luis E.
    Walker, Stephen G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 6102 - 6113