Small area estimation of average compositions under multivariate nested error regression models

被引:0
|
作者
María Dolores Esteban
María José Lombardía
Esther López-Vizcaíno
Domingo Morales
Agustín Pérez
机构
[1] Universidad Miguel Hernández de Elche,
[2] Universidade da Coruña,undefined
[3] CITIC,undefined
[4] Instituto Galego de Estatística,undefined
来源
TEST | 2023年 / 32卷
关键词
Household budget survey; Small area estimation; Multivariate nested error regression model; Compositional data; Bootstrap; Household expenditures; 62E30; 62J12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the small area estimation of population averages of unit-level compositional data. The new methodology transforms the compositions into vectors of Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^m$$\end{document} and assumes that the vectors follow a multivariate nested error regression model. Empirical best predictors of domain indicators are derived from the fitted model, and their mean squared errors are estimated by parametric bootstrap. The empirical analysis of the behavior of the introduced predictors is investigated by means of simulation experiments. An application to real data from the Spanish household budget survey is given. The target is to estimate the average of proportions of annual household expenditures on food, housing and others, by Spanish provinces.
引用
收藏
页码:651 / 676
页数:25
相关论文
共 50 条