Small area estimation of average compositions under multivariate nested error regression models

被引:0
作者
María Dolores Esteban
María José Lombardía
Esther López-Vizcaíno
Domingo Morales
Agustín Pérez
机构
[1] Universidad Miguel Hernández de Elche,
[2] Universidade da Coruña,undefined
[3] CITIC,undefined
[4] Instituto Galego de Estatística,undefined
来源
TEST | 2023年 / 32卷
关键词
Household budget survey; Small area estimation; Multivariate nested error regression model; Compositional data; Bootstrap; Household expenditures; 62E30; 62J12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the small area estimation of population averages of unit-level compositional data. The new methodology transforms the compositions into vectors of Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^m$$\end{document} and assumes that the vectors follow a multivariate nested error regression model. Empirical best predictors of domain indicators are derived from the fitted model, and their mean squared errors are estimated by parametric bootstrap. The empirical analysis of the behavior of the introduced predictors is investigated by means of simulation experiments. An application to real data from the Spanish household budget survey is given. The target is to estimate the average of proportions of annual household expenditures on food, housing and others, by Spanish provinces.
引用
收藏
页码:651 / 676
页数:25
相关论文
共 100 条
  • [1] Arima S(2017)Multivariate Fay-Herriot Bayesian estimation of small area means under functional measurement error J R Stat Soc Ser A 180 1191-1209
  • [2] Bell WR(2016)Multivariate Fay-Herriot models for small area estimation Comput Stat Data Anal 94 372-390
  • [3] Datta GS(2021)Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects Stat Methods Appl 30 195-222
  • [4] Franco C(2014)Small area prediction of proportions with applications to the Canadian Labour Force Survey J Survey Stat Methodol 2 227-256
  • [5] Liseo B(2016)Empirical best prediction under area-level Poisson mixed models TEST 25 548-569
  • [6] Benavent R(2017)Poisson mixed models for studying the poverty in small areas Comput Stat Data Anal 107 32-47
  • [7] Morales D(2021)l2-Penalized temporal logit-mixed models for the estimation of regional obesity prevalence over time Stat Methods Med Res 30 1744-1768
  • [8] Benavent R(2012)Estimation and model selection in Dirichlet regression AIP Conf Proc 1443 206-213
  • [9] Morales D(2014)Disease mapping via negative binomial regression M-quantiles Stat Med 33 4805-4824
  • [10] Berg EJ(2016)Semiparametric small area estimation for binary outcomes with application to unemployment estimation for Local Authorities in the UK J R Stat Soc Ser A 179 453-479