Noncommutative Geometry and the Regularization Problem of 4D Quantum Field Theory

被引:0
作者
H. Grosse
A. Strohmaier
机构
[1] University of Vienna,Institute for Theoretical Physics
[2] TU-Graz,Institute for Theoretical Physics
来源
Letters in Mathematical Physics | 1999年 / 48卷
关键词
regularization; noncommutative geometry; geometric quantization; ℂℙ;
D O I
暂无
中图分类号
学科分类号
摘要
We give a noncommutative version of the complex projective space ℂℙ2 and show that scalar QFT on this space is free of UV divergencies. The tools necessary to investigate quantum fields on this fuzzy ℂℙ2 are developed and several possibilities to introduce spinors and Dirac operators are discussed.
引用
收藏
页码:163 / 179
页数:16
相关论文
共 16 条
[1]  
Bordemann M.(1994)Toeplitz quantization of Kähler manifolds and gl( Comm. Math. Phys. 165 281-296
[2]  
Meinrenken E.(1993)); Lett. Math. Phys. 28 239-244
[3]  
Schlichenmaier M.(1996) → ∞ limits Internat. J. Theoret. Phys. 35 231-526
[4]  
Grosse H.(1996)The construction of noncommutative manifolds using coherent states Comm. Math. Phys. 178 507-383
[5]  
Presnajder P.(1998)Towards a finite quantum field theory in noncommutative geometry J. Geom. Phys. 28 349-69
[6]  
Grosse H.(1998)Toplogical nontrivial field configurations in noncommutative geometry Lett. Math. Phys. 46 61-undefined
[7]  
Klimcik C.(1992)The fuzzy supersphere Classical Quantum Gravity 9 69-undefined
[8]  
Presnajder P.(undefined)A noncommutative regularization of the Schwinger model undefined undefined undefined-undefined
[9]  
Grosse H.(undefined)The fuzzy sphere undefined undefined undefined-undefined
[10]  
Klimcik C.(undefined)undefined undefined undefined undefined-undefined