Dilaton gravity with a boundary: from unitarity to black hole evaporation

被引:8
|
作者
Fitkevich, Maxim [1 ,2 ]
Levkov, Dmitry [1 ,3 ]
Zenkevich, Yegor [2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Russian Acad Sci, Inst Nucl Res, 60th October Anniversary Prospect 7a, Moscow 117312, Russia
[2] Moscow Inst Phys & Technol, Inst Skii 9, Dolgoprudnyi 141700, Moscow Region, Russia
[3] Lomonosov Moscow State Univ, Inst Theoret & Math Phys, Moscow 119991, Russia
[4] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[5] Ist Nazl Fis Nucl, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
[6] IGAP, Via Beirut 4, I-34100 Trieste, Italy
[7] Inst Theoret & Expt Phys, Bolshaya Cheremushkinskaya 25, Moscow 117218, Russia
基金
俄罗斯科学基金会;
关键词
2D Gravity; Black Holes; Models of Quantum Gravity; HAWKING RADIATION; BARYON NUMBER; END-POINT; ENTROPY; PREDICTABILITY; DYNAMICS;
D O I
10.1007/JHEP06(2020)184
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We point out that two-dimensional Russo-Susskind-Thorlacius (RST) model for evaporating black holes is locally equivalent-at the full quantum level-to flat-space Jackiw-Teitelboim (JT) gravity that was recently shown to be unitary. Globally, the two models differ by a reflective spacetime boundary added in the RST model. Treating the boundary as a local and covariant deformation of quantum JT theory, we develop sensible semiclassical description of evaporating RST black holes. Nevertheless, our semiclassical solutions fail to resolve the information recovery problem, and they do not indicate formation of remnants. This means that either the standard semiclassical method incorrectly describes the evaporation process or the RST boundary makes the flat-space JT model fundamentally inconsistent.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Fermions tunneling from the Horowitz-Strominger Dilaton black hole
    Li Qiang
    Zeng XiaoXiong
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (06): : 813 - 817
  • [42] Fermions tunneling from the Horowitz-Strominger Dilaton black hole
    LI Qiang & ZENG XiaoXiong Department of Physics and Engineering Technology
    Science in China(Series G:Physics,Mechanics & Astronomy), 2009, (06) : 813 - 817
  • [43] On black hole temperature in Horndeski gravity
    Hajian, K.
    Liberati, S.
    Sheikh-Jabbari, M. M.
    Vahidinia, M. H.
    PHYSICS LETTERS B, 2021, 812
  • [44] Fermions tunneling from the Horowitz-Strominger Dilaton black hole
    Qiang Li
    XiaoXiong Zeng
    Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52 : 813 - 817
  • [45] Black hole thermodynamics from quantum gravity
    Lifschytz, G
    Ortiz, M
    NUCLEAR PHYSICS B, 1997, 486 (1-2) : 131 - 148
  • [46] Black hole thermodynamics and massive gravity
    Capela, Fabio
    Tinyakov, Peter G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (04):
  • [47] Quantum chaos and unitary black hole evaporation
    Lowe, David A.
    Thorlacius, Larus
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [48] Teleporting entanglement during black hole evaporation
    Brustein, Ram
    Medved, A. J. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10): : 1 - 43
  • [49] Simple holographic models of black hole evaporation
    Akers, Chris
    Engelhardt, Netta
    Harlow, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)
  • [50] Teleporting entanglement during black hole evaporation
    Ram Brustein
    A. J. M. Medved
    Journal of High Energy Physics, 2016