Dilaton gravity with a boundary: from unitarity to black hole evaporation

被引:8
|
作者
Fitkevich, Maxim [1 ,2 ]
Levkov, Dmitry [1 ,3 ]
Zenkevich, Yegor [2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Russian Acad Sci, Inst Nucl Res, 60th October Anniversary Prospect 7a, Moscow 117312, Russia
[2] Moscow Inst Phys & Technol, Inst Skii 9, Dolgoprudnyi 141700, Moscow Region, Russia
[3] Lomonosov Moscow State Univ, Inst Theoret & Math Phys, Moscow 119991, Russia
[4] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[5] Ist Nazl Fis Nucl, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
[6] IGAP, Via Beirut 4, I-34100 Trieste, Italy
[7] Inst Theoret & Expt Phys, Bolshaya Cheremushkinskaya 25, Moscow 117218, Russia
基金
俄罗斯科学基金会;
关键词
2D Gravity; Black Holes; Models of Quantum Gravity; HAWKING RADIATION; BARYON NUMBER; END-POINT; ENTROPY; PREDICTABILITY; DYNAMICS;
D O I
10.1007/JHEP06(2020)184
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We point out that two-dimensional Russo-Susskind-Thorlacius (RST) model for evaporating black holes is locally equivalent-at the full quantum level-to flat-space Jackiw-Teitelboim (JT) gravity that was recently shown to be unitary. Globally, the two models differ by a reflective spacetime boundary added in the RST model. Treating the boundary as a local and covariant deformation of quantum JT theory, we develop sensible semiclassical description of evaporating RST black holes. Nevertheless, our semiclassical solutions fail to resolve the information recovery problem, and they do not indicate formation of remnants. This means that either the standard semiclassical method incorrectly describes the evaporation process or the RST boundary makes the flat-space JT model fundamentally inconsistent.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Thermodynamics and evaporation of the noncommutative black hole
    Myung, Yun Soo
    Kim, Yong-Wan
    Park, Young-Jai
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):
  • [32] Probability distribution for black hole evaporation
    Ghosal, Pratik
    Ray, Rajarshi
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [33] Information flow in black hole evaporation
    Chen, Hong Zhe
    Fisher, Zachary
    Hernandez, Juan
    Myers, Robert C.
    Ruan, Shan-Ming
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
  • [34] A unitary model of the black hole evaporation
    Feng, Yu-Lei
    Chen, Yi-Xin
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12): : 1 - 43
  • [35] Qubit models of black hole evaporation
    Steven G. Avery
    Journal of High Energy Physics, 2013
  • [36] Tunneling radiation of a Gibbons-Maeda dilaton black hole
    Li, Gu-Qiang
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (01) : 586 - 589
  • [37] Operational islands and black hole dissipation in JT gravity
    De Vuyst, Julian
    Mertens, Thomas G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (01)
  • [38] Charged rotating black holes in dilaton gravity
    Sheykhi, A.
    Riazi, N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (26): : 4849 - 4858
  • [39] Black hole in a model with dilaton and monopole fields
    Kyriakopoulos, E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (12): : 2223 - 2228
  • [40] Fermions Emission of Linear Dilaton Black Hole
    Mirekhtiary, Seyedeh Fatemeh
    Abbasi, Akbar
    TURKISH PHYSICAL SOCIETY 34TH INTERNATIONAL PHYSICS CONGRESS (TPS34), 2018, 2042