Radon transforms and Gegenbauer–Chebyshev integrals, I

被引:0
作者
Boris Rubin
机构
[1] Louisiana State University,Department of Mathematics
来源
Analysis and Mathematical Physics | 2017年 / 7卷
关键词
Radon transform; Support theorems; Gegenbauer–Chebyshev fractional integrals; 44A12; 44A15;
D O I
暂无
中图分类号
学科分类号
摘要
We suggest new modifications of the Helgason’s support theorem and description of the kernel for the hyperplane Radon transform and its dual. The assumptions for functions are formulated in integral terms and close to minimal. The proofs rely on the properties of the Gegenbauer–Chebyshev integrals which generalize Abel type fractional integrals on the positive half-line.
引用
收藏
页码:117 / 150
页数:33
相关论文
共 38 条
[1]  
Armitage DH(1994)A non-constant continuous function on the plane whose integral on every line is zero Am. Math. Mon. 101 892-894
[2]  
Armitage DH(1993)Nonuniqueness for the Radon transform Proc. Am. Math. Soc. 117 175-178
[3]  
Goldstein M(1995)Fractional calculus, Gegenbauer transformations, and integral equations J. Math. Anal. Appl. 194 126-146
[4]  
van Berkel CAM(1993)An example of nonuniqueness for a generalized Radon transform J. Anal. Math. 61 395-401
[5]  
van Eijndhoven SJL(2009)Support theorems for the Radon transform and Cramér–Wold theorems J. Theor. Probab. 22 683-710
[6]  
Boman J(1987)Support theorems for real-analytic Radon transforms Duke Math. J. 55 943-948
[7]  
Boman J(1993)Support theorems for Radon transforms on real analytic line complexes in three-space Trans. Am. Math. Soc. 335 877-890
[8]  
Lindskog F(1963)Representation of a function by its line integrals, with some radiological applications J. Appl. Phys. 34 2722-2727
[9]  
Boman J(1980)A Radon transform on spheres through the origin in Trans. Am. Math. Soc. 260 575-581
[10]  
Quinto ET(2016) and applications to the Darboux equation Adv. Math. 290 1159-1182