Ground States for the Nonlinear Schrödinger Equation with Critical Growth and Potential

被引:0
作者
Kang, Jin-Cai [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; ground state solution; critical growth; splitting Lemma; variational method; SCHRODINGER-EQUATIONS; ELLIPTIC PROBLEMS; POSITIVE SOLUTIONS; R-N; EXISTENCE;
D O I
10.1007/s00025-024-02166-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a class of the nonlinear Schrodinger equation in R-N -Delta u+V(x)u=|u|(2)& lowast;-2u+lambda|u|(p-2)u, where N >= 3, lambda>0 and p is an element of (2,2 & lowast;) with 2 & lowast;=2N/N-2. Here, V(x)=V-1(x) for x(1)>0 and V(x)=V-2(x) for x(1)<0, where V-1,V-2 are periodic in each coordinate direction. By providing a splitting Lemma corresponding to non-periodic external potential, we obtain the existence of ground state solution for the above problem. It is worth to mention that the arguments used in this paper are also valid for the Sobolev subcritical problem studied by Dohnal et al. (Commun Math Phys 308:511-542, 2011)
引用
收藏
页数:17
相关论文
共 22 条
[1]  
Alves CO, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-021-02123-1
[2]   Nonlinear perturbations of a periodic elliptic problem with critical growth [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :133-146
[3]   Local mountain-pass for a class of elliptic problems in RN involving critical growth [J].
Alves, CO ;
do O, JM ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (04) :495-510
[4]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[5]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[8]   Surface Gap Soliton Ground States for the Nonlinear Schrodinger Equation [J].
Dohnal, Tomas ;
Plum, Michael ;
Reichel, Wolfgang .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (02) :511-542
[9]   Normalized Ground State Solutions for Critical Growth Schrodinger Equations [J].
Fan, Song ;
Li, Gui-Dong .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
[10]   A positive solution for a nonlinear Schrodinger equation on RN [J].
Jeanjean, L ;
Tanaka, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (02) :443-464