Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries

被引:0
|
作者
Yanglin Liu
Yaping Wang
Yifang Zhang
Shuquan Liang
Anqiang Pan
机构
[1] Central South University,School of Materials Science and Engineering
[2] Changsha Environmental Protection Vocational College,undefined
来源
Nanoscale Research Letters | 2016年 / 11卷
关键词
Vanadium oxides; Reduced graphene oxide; Lithium-ion batteries; Nanosheets; Nanoparticles;
D O I
暂无
中图分类号
学科分类号
摘要
Transition metal oxides and graphene composites have been widely reported in energy storage and conversion systems. However, the controllable synthesis of graphene-based nanocomposites with tunable morphologies is far less reported. In this work, we report the fabrication of V2O5 and reduced graphene oxide composites with nanosheet or nanoparticle-assembled subunits by adjusting the solvothermal solution. As cathode materials for lithium-ion batteries, the nanosheet-assembled V2O5/graphene composite exhibits better rate capability and long-term cycling stability. The V2O5/graphene composites can deliver discharge capacities of 133, 131, and 122 mAh g−1 at 16 C, 32 C, and 64 C, respectively, in the voltage range of 2.5–4.0 V vs. Li/Li+. Moreover, the electrodes can retain 85% of their original capacity at 1C rate after 500 cycles. The superior electrochemical performances are attributed to the porous structures created by the connected V2O5 nanosheets and the electron conductivity improvement by graphene.
引用
收藏
相关论文
共 50 条
  • [1] Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries
    Liu, Yanglin
    Wang, Yaping
    Zhang, Yifang
    Liang, Shuquan
    Pan, Anqiang
    NANOSCALE RESEARCH LETTERS, 2016, 11
  • [2] Controllable Preparation of V2O5 Hollow Microspheres as Cathode Materials for Lithium-Ion Batteries
    An, Xinxin
    Su, Qiong
    Liu, Yanglin
    Pan, Anqiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (07): : 6885 - 6894
  • [3] Synthesis of V2O5 nanoparticles: cathode materials for lithium-ion batteries
    Nagaraju, G.
    Jayalakshmi, T.
    Ashok, S.
    Manjunath, K.
    BULLETIN OF MATERIALS SCIENCE, 2019, 42 (03)
  • [4] Electrospun V2O5 Nanostructures with Controllable Morphology as High-Performance Cathode Materials for Lithium-Ion Batteries
    Wang, Heng-guo
    Ma, De-Long
    Huang, Yun
    Zhang, Xin-bo
    CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (29) : 8987 - 8993
  • [5] The mechanical hybrid of V2O5 microspheres/graphene as an excellent cathode for lithium-ion batteries
    Chen, Angkang
    Li, Chonggui
    Zhang, Chaomin
    Li, Wenyao
    Yang, Qi
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (03) : 729 - 738
  • [6] The mechanical hybrid of V2O5 microspheres/graphene as an excellent cathode for lithium-ion batteries
    Angkang Chen
    Chonggui Li
    Chaomin Zhang
    Wenyao Li
    Qi Yang
    Journal of Solid State Electrochemistry, 2022, 26 : 729 - 738
  • [7] Graphene Nanoribbon/V2O5 Cathodes in Lithium-Ion Batteries
    Yang, Yang
    Li, Lei
    Fei, Huilong
    Peng, Zhiwei
    Ruan, Gedeng
    Tour, James M.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (12) : 9590 - 9594
  • [8] Single Crystalline V2O5 Nanowire/Graphene Composite as Cathode Material for Lithium-ion Batteries
    He, Qing
    Zhao, Dong-lin
    Zhu, Yang-yang
    Zhang, Jing-xing
    EIGHTH CHINA NATIONAL CONFERENCE ON FUNCTIONAL MATERIALS AND APPLICATIONS, 2014, 873 : 575 - 580
  • [9] In situ prepared V2O5/graphene hybrid as a superior cathode material for lithium-ion batteries
    Mateti, Srikanth
    Rahman, Md Mokhlesur
    Li, Lu Hua
    Cai, Qiran
    Chen, Ying
    RSC ADVANCES, 2016, 6 (42): : 35287 - 35294
  • [10] Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries
    Chen, Da
    Yi, Ran
    Chen, Shuru
    Xu, Terrence
    Gordin, Mikhail L.
    Lv, Dongping
    Wang, Donghai
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2014, 185 : 7 - 12