On metric connections with torsion on the cotangent bundle with modified Riemannian extension

被引:4
作者
Bilen L. [1 ]
Gezer A. [2 ]
机构
[1] Department of Mathematics and Computer, Faculty of Science and Letters, Igdir University, Igdir
[2] Department of Mathematics, Faculty of Science, Ataturk University, Erzurum
关键词
Cotangent bundle; fibre-preserving projective vector field; metric connection; Riemannian extension; semi-symmetry;
D O I
10.1007/s00022-018-0411-9
中图分类号
学科分类号
摘要
Let M be an n-dimensional differentiable manifold equipped with a torsion-free linear connection ∇ and T∗M its cotangent bundle. The present paper aims to study a metric connection ∇ ~ with nonvanishing torsion on T∗M with modified Riemannian extension g¯ ∇ , c. First, we give a characterization of fibre-preserving projective vector fields on (T∗M, g¯ ∇ , c) with respect to the metric connection ∇ ~. Secondly, we study conditions for (T∗M, g¯ ∇ , c) to be semi-symmetric, Ricci semi-symmetric, Z~ semi-symmetric or locally conharmonically flat with respect to the metric connection ∇ ~. Finally, we present some results concerning the Schouten–Van Kampen connection associated to the Levi-Civita connection ∇ ¯ of the modified Riemannian extension g¯ ∇ , c. © 2018, Springer International Publishing AG, part of Springer Nature.
引用
收藏
相关论文
共 30 条
[1]  
Aslanci S., Cakan R., On a cotangent bundle with deformed Riemannian extension, Mediterr. J. Math., 11, 4, pp. 1251-1260, (2014)
[2]  
Afifi Z., Riemann extensions of affine connected spaces, Quart. J. Math. Oxf. Ser., 2, 5, pp. 312-320, (1954)
[3]  
Calvino-Louzao E., Garcia-Rio E., Gilkey P., Vazquez-Lorenzo A., The geometry of modified Riemannian extensions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 2107, pp. 2023-2040, (2009)
[4]  
Calvino-Louzao E., Garcia-Rio E., V azquez-Lorenzo R., Riemann extensions of torsion-free connections with degenerate Ricci tensor, Can. J. Math., 62, 5, pp. 1037-1057, (2010)
[5]  
Derdzinski A., Connections with skew-symmetric Ricci tensor on surfaces, Results Math., 52, 3-4, pp. 223-245, (2008)
[6]  
Dryuma V., The Riemann extensions in theory of differential equations and their applications, Mat. Fiz. Anal. Geom., 10, 3, pp. 307-325, (2003)
[7]  
Garcia-Rio E., Kupeli D.N., Vazquez-Abal M.E., Vazquez-Lorenzo R., Affine Osserman connections and their Riemann extensions, Differ. Geom. Appl., 11, 2, pp. 145-153, (1999)
[8]  
Gezer A., Bilen L., Cakmak A., Properties of modified Riemannian extensions, Zh. Mat. Fiz. Anal. Geom., 11, 2, pp. 159-173, (2015)
[9]  
Hayden H.A., Sub-spaces of a space with torsion, Proc. Lond. Math. Soc., S2–34, pp. 27-50, (1932)
[10]  
Ikawa T., Honda K., On Riemann extension, Tensor (N.S.), 60, 2, pp. 208-212, (1998)