Relaxation Oscillations in Predator–Prey Systems

被引:0
|
作者
Shangbing Ai
Yingfei Yi
机构
[1] University of Alabama in Huntsville,Department of Mathematical Sciences
[2] University of Alberta,Department of Mathematical and Statistical Science
[3] Jilin University,School of Mathematics
来源
Journal of Dynamics and Differential Equations | 2024年 / 36卷
关键词
Relaxation oscillations; Periodic traveling waves; Singular and regular perturbations; Predator–prey systems; 34C26; 34C25; 34D15; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize a criterion for the existence of relaxation oscillations in planar systems of the form dudt=uk+1g(u,v,ε),dvdt=εf(u,v,ε)+uk+1h(u,v,ε),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{du}{dt}= u^{k+1} g(u,v,\varepsilon ), \qquad \frac{dv}{dt}=\varepsilon f(u,v,\varepsilon ) + u^{k+1} h(u,v,\varepsilon ), \end{aligned}$$\end{document}where k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 0$$\end{document} is an arbitrary constant and ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} is a sufficiently small parameter. Taking into account of possible degeneracy of the “discriminant” function occurred when k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 0$$\end{document}, this criterion generalizes and strengthens those for the case k=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=0$$\end{document} obtained by Hsu (SIAM J Appl Dyn Syst 18:33–67, 2019) and Hsu and Wolkowicz (Discrete Contin Dyn Syst Ser B 25:1257–1277, 2020). Differing from the case of k=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=0$$\end{document}, our proof of the criterion is based on the construction of an invariant, thin annular region in an arbitrarily prescribed small neighborhood of a singular closed orbit and the establishment of an asymptotic formula for solutions near the v-axis. As applications of this criterion, we will give concrete conditions ensuring the existence of relaxation oscillations in general predator–prey systems, as well as spatially homogeneous relaxation oscillations and relaxed periodic traveling waves in a class of diffusive predator–prey systems.
引用
收藏
页码:77 / 104
页数:27
相关论文
共 50 条