Some Methods for Simultaneous Extraction of a Part of All Multiple Roots of Algebraic Polynomials

被引:0
作者
A. Iliev
N. Kyurkchiev
机构
[1] University of Plovdiv,Faculty of Mathematics and Informatics
[2] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
来源
Computing | 2005年 / 75卷
关键词
65H05; Simultaneous root finding; multiple roots; Weierstrass method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the new methods being generalizations of Weierstrass-Dochev method have been demonstrated. These methods possess quadratic convergence if the multiplicities of the roots, which we seek, are known and they can be used for simultaneous determination of all roots or only part of all roots.
引用
收藏
页码:85 / 97
页数:12
相关论文
共 19 条
[1]  
Alefeld G.(1974)On the convergence speed of some algorithms for the simultaneous approximation of polynomial roots SIAM J. Numer. Anal. 11 237-243
[2]  
Herzberger J.(1982)Lower bounds for the Perron root of a nonnegative irreducible matrix Math. Proc. Cambridge Philos. Soc. 92 49-54
[3]  
Deutsch E.(1962)An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation Phys.-Math. J. 5 136-139
[4]  
Dochev K.(1977)An algorithm for the total, or partial, factorization of a polynomial Math. Proc. Camb. Phil. Soc. 82 427-437
[5]  
Farmer M.(2001)On a generalization of Weierstrass-Dochev method for simultaneous extraction of all roots of polynomials, over an arbitrary Chebyshev system C. R. Acad. Bulg. Sci. 54 31-36
[6]  
Loizou G.(2002)On a generalization of Weierstrass-Dochev method for simultaneous extraction of only a part of all roots of algebraic polynomials, part I C. R. Acad. Bulg. Sci. 55 23-26
[7]  
Iliev A.(2001)On a generalization of Obreshkoff-Ehrlich method for simultaneous extraction of all roots of polynomials over an arbitrary Chebyshev system Comput. Math. Phys. 41 1385-1392
[8]  
Iliev I.(2002)A family of methods for simultaneous extraction of only a part of all roots of algebraic polynomials BIT 42 879-885
[9]  
Iliev A.(1982)Une note sur le procédé itératif de Marica Prešić C. R. Acad. Sci. Paris 295 707-710
[10]  
Kyurkchiev N.(1971)Un procédé itératif pour déterminer k zéros d’un polynome C. R. Acad. Sci. Paris 273 446-449