Independent feature screening for ultrahigh-dimensional models with interactions

被引:0
|
作者
Yunquan Song
Xuehu Zhu
Lu Lin
机构
[1] China University of Petroleum,College of Science
[2] Shandong University,School of Mathematics
来源
Journal of the Korean Statistical Society | 2014年 / 43卷
关键词
Feature ranking; Variable selection; Interaction term; Model-free; 62F05; 62P10;
D O I
暂无
中图分类号
学科分类号
摘要
Feature selection is an important technique for ultrahigh-dimensional data analysis. Most feature selection methods such as SIS and its relevant versions heavily depend on the specified model structures. Furthermore, feature interactions are usually not taken into account in the existing literature. In this paper, we present a novel feature selection method for the model with variable interactions, without the use of structure assumption. Thus, the new ranking criterion is flexible and can deal with the models that contain interactions. Moreover, the new screening procedures are not complex, consequently, they are computationally efficient and the theoretical properties suchas the ranking consistency and sure screening properties can be easily obtained. Several real and simulation examples are presented to illustrate the methodology.
引用
收藏
页码:567 / 583
页数:16
相关论文
共 50 条
  • [1] Independent feature screening for ultrahigh-dimensional models with interactions
    Song, Yunquan
    Zhu, Xuehu
    Lin, Lu
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (04) : 567 - 583
  • [2] Feature Screening for Nonparametric and Semiparametric Models with Ultrahigh-Dimensional Covariates
    Zhang Junying
    Zhang Riquan
    Zhang Jiajia
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2018, 31 (05) : 1350 - 1361
  • [3] FEATURE SCREENING IN ULTRAHIGH-DIMENSIONAL GENERALIZED VARYING-COEFFICIENT MODELS
    Yang, Guangren
    Yang, Songshan
    Li, Runze
    STATISTICA SINICA, 2020, 30 (02) : 1049 - 1067
  • [4] The Sparse MLE for Ultrahigh-Dimensional Feature Screening
    Xu, Chen
    Chen, Jiahua
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 1257 - 1269
  • [5] Model-Free Feature Screening for Ultrahigh-Dimensional Data
    Zhu, Li-Ping
    Li, Lexin
    Li, Runze
    Zhu, Li-Xing
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1464 - 1475
  • [6] Feature screening in ultrahigh-dimensional partially linear models with missing responses at random
    Tang, Niansheng
    Xia, Linli
    Yan, Xiaodong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 133 : 208 - 227
  • [7] Feature screening in ultrahigh-dimensional additive Cox model
    Yang, Guangren
    Hou, Sumin
    Wang, Luheng
    Sun, Yanqing
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1117 - 1133
  • [8] A selective overview of feature screening for ultrahigh-dimensional data
    Liu JingYuan
    Zhong Wei
    Li RunZe
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (10) : 2033 - 2054
  • [9] Nonparametric independence feature screening for ultrahigh-dimensional survival data
    Pan, Jing
    Yu, Yuan
    Zhou, Yong
    METRIKA, 2018, 81 (07) : 821 - 847
  • [10] A nonparametric feature screening method for ultrahigh-dimensional missing response
    Li, Xiaoxia
    Tang, Niansheng
    Xie, Jinhan
    Yan, Xiaodong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142