Symmetry identities of q-Bernoulli polynomials of the second kind

被引:0
作者
Dae San Kim
Taekyun Kim
机构
[1] Sogang University,Department of Mathematics
[2] Kwangwoon University,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2015年 / 46卷
关键词
-Bernoulli polynomial of the second kind; identity of symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give identities of symmetry for the q-Bernoulli polynomials which are derived from the symmetric properties of the p-adic invariant integrals on ℤp.
引用
收藏
页码:85 / 90
页数:5
相关论文
共 40 条
  • [1] Cenkci M.(2008)On ( Appl. Math. Lett. 21 706-711
  • [2] Kurt V.(2011), Adv. Stud. Contemp. Math. (Kyungshang) 21 351-354
  • [3] Rim S. H.(2010)) Bernoulli and Euler numbers Adv. Stud. Contemp. Math. (Kyungshang) 20 7-21
  • [4] Simsek Y.(2013)A note on the extended Adv. Stud. Contemp. Math. (Kyungshang) 23 461-482
  • [5] Choi J.(2008)-Bernoulli numbers and polynomials Adv. Stud. Contemp. Math. (Kyungshang) 17 137-145
  • [6] Kim T.(1994)Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials Kyushu J. Math. 48 73-86
  • [7] Kim Y. H.(1999)Abundant symmetry for higher-order Bernoulli polynomials (I) J. Number Theory 76 320-329
  • [8] Ding D.(2002)The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers Russ. J. Math. Phys. 9 288-299
  • [9] Yang J.(2012)On explicit formulas of J. Comput. Anal. Appl. 14 402-409
  • [10] Kim D. S.(2004)-adic Adv. Stud. Contemp. Math. (Kyungshang) 9 15-18