Weyl's theorem and Putnam's inequality for class p-wA(s, t) operators

被引:6
作者
Rashid M.H.M. [1 ]
Chō M. [2 ]
Prasad T. [3 ]
Tanahashi K. [4 ]
Uchiyama A. [5 ]
机构
[1] Department of Mathematics, Faculty of Science, Mu'tah University, P. O. Box (7), Al-Karak
[2] Department of Mathematics, Faculty of Science, Kanagawa University, Hiratsuka
[3] School of Mathematics, Indian Institute of Science Education and Research-Thiruvananthapuram, Kerala, Thiruvananthapuram
[4] Department of Mathematics, Tohoku Medical and Pharmaceutical University, Sendai
[5] Department of Mathematical Science, Faculty of Science, Yamagata University, Yamagata
来源
Acta Scientiarum Mathematicarum | 2018年 / 84卷 / 3-4期
基金
日本学术振兴会;
关键词
Class p-wA(sT); Normaloid; Putnam's inequality; Reguloid; Research-Thiruvananthapuram; Supported by the Indian Institute of Science Education; Weyl's theorem;
D O I
10.14232/actasm-017-020-y
中图分类号
学科分类号
摘要
In this paper, we study spectral properties of class p-wA(s, t) operators with 0 < p ≤ 1 and 0 < s, t, s + t ≤ 1. We show that Weyl's theorem and Putnam's inequality hold for class p-wA(s, t) operators. © 2018 University of Szeged. All rights reserved.
引用
收藏
页码:573 / 589
页数:16
相关论文
共 50 条
  • [41] A Note on the Browder's and Weyl's Theorem
    M.AMOUCH
    H.ZGUITTI
    Acta Mathematica Sinica,English Series, 2008, (12) : 2015 - 2020
  • [42] A Note on the Browder’s and Weyl’s theorem
    M. Amouch
    H. Zguitti
    Acta Mathematica Sinica, English Series, 2008, 24
  • [43] A Note on the Browder's and Weyl's Theorem
    Amouch, M.
    Zguitti, H.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (12) : 2015 - 2020
  • [44] Weyl’s Theorem and Perturbations
    Mourad Oudghiri
    Integral Equations and Operator Theory, 2005, 53 : 535 - 545
  • [45] Perturbations and Weyl's theorem
    Duggal, B. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2899 - 2905
  • [46] Riesz Idempotent and Weyl’s Theorem for w-hyponormal Operators
    Young Min Han
    Jun Ik Lee
    Derming Wang
    Integral Equations and Operator Theory, 2005, 53 : 51 - 60
  • [47] Riesz idempotent and Weyl's theorem for w-hyponormal operators
    Han, YM
    Lee, JI
    Wang, DM
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (01) : 51 - 60
  • [48] A note on Weyl's theorem
    Cao, XH
    Guo, MZ
    Meng, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 2977 - 2984
  • [49] Weyl's theorem and perturbations
    Oudghiri, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) : 535 - 545
  • [50] WEYL'S AND BROWDER'S THEOREM FOR AN ELEMENTARY OPERATOR
    Lombarkia, F.
    Bachir, A.
    MATEMATICKI VESNIK, 2007, 59 (03): : 135 - 142