Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity

被引:0
作者
Bitao Cheng
Xian Wu
Jun Liu
机构
[1] Qujing Normal University,Department of Mathematics and Information Science
[2] Yunnan Normal University,Department of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2012年 / 19卷
关键词
35J60; 58E30; Critical point; Ekeland variational principle; Kirchhoff type problems; Multiple solutions;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, by applying variant mountain pass theorem and Ekeland variational principle we study the existence of multiple nontrivial solutions for a class of Kirchhoff type problems with concave nonlinearity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{\begin{array}{ll} -(a + b \int\nolimits_{\Omega} |\nabla{u}|^{2})\triangle{u} = \alpha(x)|u|^{q-2}u + f(x, u),\quad{\rm in}\;\Omega,\\ u = 0,\;\quad\qquad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad{\rm on}\;\partial\Omega, \end{array} \right. $$\end{document}A new existence theorem and an interesting corollary of four nontrivial solutions are obtained.
引用
收藏
页码:521 / 537
页数:16
相关论文
共 28 条
[1]  
Alves C.O.(2005)Positive solutions for a quasilinear elliptic equation of Kirchhoff type Comput. Math. Appl. 49 85-93
[2]  
Corrêa F.J.S.A.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[3]  
Ma T.F.(1940)Sur une class d’ẑquations fonctionnelles aux dẑrivẑes partielles Bull. Acad. Sci. URSS. Sẑr. Math. [Izv. Akad. Nauk SSSR] 4 17-26
[4]  
Ambrosetti A.(1991)Remarks on finding critical points Commun. Pure Appl. Math. 64 939-963
[5]  
Rabinowitz P. H.(1978)Un criterio di esistenza per i punti critici su varietá illimitate Istit. Lombardo Acad. Sci. Lett. Rend. A 112 236-332
[6]  
Bernstein S.(2009)Existence results of positive solutions of Kirchhoff type problems Nonlinear Anal. 71 4883-4892
[7]  
Brezis H.(1997)Some remarks on nonlocal elliptic and parabolic problems Nonlinear Anal. 30 4619-4627
[8]  
Nirenberg L.(1995)Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains J. Math. Anal. 193 737-755
[9]  
Cerami G.(1992)Global solvability for the degenerate Kirchhoff equation with real analytic data Invent. Math. 108 247-262
[10]  
Cheng B.(2009)Infinitely many positive solutions for Kirchhoff-type problems Nonlinear Anal. 70 1407-1414