Cooperative nucleic acid binding by Poly ADP-ribose polymerase 1

被引:2
作者
Melikishvili, Manana [1 ]
Fried, Michael G. [2 ]
Fondufe-Mittendorf, Yvonne N. [1 ]
机构
[1] Van Andel Inst, Dept Epigenet, Grand Rapids, MI 49503 USA
[2] Univ Kentucky, Ctr Struct Biol, Dept Mol & Cellular Biochem, Lexington, KY 40536 USA
基金
美国国家科学基金会;
关键词
SEDIMENTATION COEFFICIENT DISTRIBUTIONS; HUMAN POLY(ADP-RIBOSE) POLYMERASE-1; PROTEOME-WIDE IDENTIFICATION; SINGLE-STRAND BREAKS; CHROMATIN-STRUCTURE; DNA-BINDING; STRUCTURAL BASIS; HUMAN PARP-1; X-RAY; DOMAIN;
D O I
10.1038/s41598-024-58076-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Poly (ADP)-ribose polymerase 1 (PARP1) is an abundant nuclear protein well-known for its role in DNA repair yet also participates in DNA replication, transcription, and co-transcriptional splicing, where DNA is undamaged. Thus, binding to undamaged regions in DNA and RNA is likely a part of PARP1's normal repertoire. Here we describe analyses of PARP1 binding to two short single-stranded DNAs, a single-stranded RNA, and a double stranded DNA. The investigations involved comparing the wild-type (WT) full-length enzyme with mutants lacking the catalytic domain ( increment CAT) or zinc fingers 1 and 2 ( increment Zn1 increment Zn2). All three protein types exhibited monomeric characteristics in solution and formed saturated 2:1 complexes with single-stranded T20 and U20 oligonucleotides. These complexes formed without accumulation of 1:1 intermediates, a pattern suggestive of positive binding cooperativity. The retention of binding activities by increment CAT and increment Zn1 increment Zn2 enzymes suggests that neither the catalytic domain nor zinc fingers 1 and 2 are indispensable for cooperative binding. In contrast, when a double stranded 19mer DNA was tested, WT PARP1 formed a 4:1 complex while the increment Zn1Zn2 mutant binding saturated at 1:1 stoichiometry. These deviations from the 2:1 pattern observed with T20 and U20 oligonucleotides show that PARP's binding mechanism can be influenced by the secondary structure of the nucleic acid. Our studies show that PARP1:nucleic acid interactions are strongly dependent on the nucleic acid type and properties, perhaps reflecting PARP1's ability to respond differently to different nucleic acid ligands in cells. These findings lay a platform for understanding how the functionally versatile PARP1 recognizes diverse oligonucleotides within the realms of chromatin and RNA biology.
引用
收藏
页数:15
相关论文
共 94 条
[1]  
Adams C.A., 2007, PROTEIN INTERACTIONS, P417
[2]   Crystal structure of a group I intron splicing intermediate [J].
Adams, PL ;
Stahley, MR ;
Gill, ML ;
Kosek, AB ;
Wang, JM ;
Strobel, SA .
RNA, 2004, 10 (12) :1867-1887
[3]   Poly(ADP-ribose)-Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1 [J].
Ahel, Dragana ;
Horejsi, Zuzana ;
Wiechens, Nicola ;
Polo, Sophie E. ;
Garcia-Wilson, Elisa ;
Ahel, Ivan ;
Flynn, Helen ;
Skehel, Mark ;
West, Stephen C. ;
Jackson, Stephen P. ;
Owen-Hughes, Tom ;
Boulton, Simon J. .
SCIENCE, 2009, 325 (5945) :1240-1243
[4]   Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins [J].
Alemasova, Elizaveta E. ;
Lavrik, Olga I. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (08) :3811-3827
[5]   The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks [J].
Ali, Ammar A. E. ;
Timinszky, Gyula ;
Arribas-Bosacoma, Raquel ;
Kozlowski, Marek ;
Hassa, Paul O. ;
Hassler, Markus ;
Ladurner, Andreas G. ;
Pearl, Laurence H. ;
Oliver, Antony W. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (07) :685-+
[6]   Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites [J].
Altmeyer, Matthias ;
Messner, Simon ;
Hassa, Paul O. ;
Fey, Monika ;
Hottiger, Michael O. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (11) :3723-3738
[7]   The role of the S1 domain in exoribonucleolytic activity: Substrate specificity and multimerization [J].
Amblar, Monica ;
Barbas, Ana ;
Gomez-Puertas, Paulino ;
Arraiano, Cecilia M. .
RNA, 2007, 13 (03) :317-327
[8]   MACROMOLECULAR ASSOCIATION OF ADP-RIBOSYLTRANSFERASE AND ITS CORRELATION WITH ENZYMATIC-ACTIVITY [J].
BAUER, PI ;
BUKI, KG ;
HAKAM, A ;
KUN, E .
BIOCHEMICAL JOURNAL, 1990, 270 (01) :17-26
[9]   Poly(ADP-ribose) polymerases in double-strand break repair: Focus on PARP1, PARP2 and PARP3 [J].
Beck, Carole ;
Robert, Isabelle ;
Reina-San-Martin, Bernardo ;
Schreiber, Valerie ;
Dantzer, Francoise .
EXPERIMENTAL CELL RESEARCH, 2014, 329 (01) :18-25
[10]   Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization [J].
Bell, Nicholas A. W. ;
Haynes, Philip J. ;
Brunner, Katharina ;
de Oliveira, Taiana Maia ;
Flocco, Maria M. ;
Hoogenboom, Bart W. ;
Molloy, Justin E. .
SCIENCE ADVANCES, 2021, 7 (33)