Inverse product Toeplitz preconditioners for non-Hermitian Toeplitz systems

被引:0
作者
Fu-Rong Lin
Michael K. Ng
机构
[1] Shantou University,Mathematics Department
[2] Hong Kong Baptist University,Department of Mathematics
来源
Numerical Algorithms | 2010年 / 54卷
关键词
Toeplitz matrix; Generating function; Rational function; GMRES; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first propose product Toeplitz preconditioners (in an inverse form) for non-Hermitian Toeplitz matrices generated by functions with zeros. Our inverse product-type preconditioner is of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_F T_L^{-1} T_U^{-1}$\end{document} where TF, TL, and TU are full, band lower triangular, and band upper triangular Toeplitz matrices, respectively. Our basic idea is to decompose the generating function properly such that all factors TF, TL, and TU of the preconditioner are as well-conditioned as possible. We prove that under certain conditions, the preconditioned matrix has eigenvalues and singular values clustered around 1. Then we use a similar idea to modify the preconditioner proposed in Ku and Kuo (SIAM J Sci Stat Comput 13:1470–1487, 1992) to handle the zeros in rational generating functions. Numerical results, including applications to the computation of the stationary probability distribution of Markovian queuing models with batch arrival, are given to illustrate the good performance of the proposed preconditioners.
引用
收藏
页码:279 / 295
页数:16
相关论文
共 42 条
[1]  
Böttcher A(1999)Toeplitz band matrices with exponentially growing condition numbers Electron. J. Linear Algebra 5 104-125
[2]  
Grudsky S(1997)Norms of inverses, spectra, and pseudospectra of large truncated Wiener-Hopf operators and Toeplitz matrices N. Y. J. Math. 3 1-31
[3]  
Böttcher A(1991)Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions IMA J. Numer. Anal. 11 333-345
[4]  
Grudsky S(1996)Toeplitz-circulant preconditioners for Toeplitz systems and their applications to queueing networks with batch arrivals SIAM J. Sci. Comput. 17 762-772
[5]  
Silbermann B(1993)Toeplitz preconditioners for Hermitian Toeplitz systems Linear Algebra Appl. 190 181-208
[6]  
Chan R(1996)Conjugate gradient methods for Toeplitz systems SIAM Rev. 38 427-482
[7]  
Chan R(2001)Preconditioners for non-Hermitian Toeplitz systems Numer. Linear Algebra Appl. 8 83-98
[8]  
Ching WK(1993)Circulant preconditioners for complex Toeplitz systems SIAM J. Numer. Anal. 30 1193-1207
[9]  
Chan R(1988)An optimal circulant preconditioner for Toeplitz systems SIAM J. Sci. Statist. Comput. 9 766-771
[10]  
Ng KP(2003)Iterative methods for queuing systems with batch arrivals and negative customers BIT Numer. Math. 43 285-296