A Regularity Criterion for the 3D Generalized MHD Equations

被引:2
作者
Jishan Fan
Ahmed Alsaedi
Tasawar Hayat
Gen Nakamura
Yong Zhou
机构
[1] Nanjing Forestry University,Department of Applied Mathematics
[2] King Abdulaziz University,Department of Mathematics, Faculty of Science
[3] Quaid-I-Azam University 45320,Department of Mathematics
[4] Inha University,Department of Mathematics
[5] Shanghai University of Finance and Economics,School of Mathematics
来源
Mathematical Physics, Analysis and Geometry | 2014年 / 17卷
关键词
Generalized MHD system; Regularity criterion; Fractional diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proves a new regularity criterion for the 3D generalized MHD system with fractional diffusion terms ( − Δ)αu and ( − Δ)βb with 0<α<54≤β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha <\frac 54\leqslant \beta $\end{document}.
引用
收藏
页码:333 / 340
页数:7
相关论文
共 18 条
  • [1] Wu J(2003)Generalized MHD equations J. Diff. Equat. 195 284-312
  • [2] Wu J(2008)Regularity criteria for the generalized MHD equations Comm. Partial Differ. Equ. 33 285-306
  • [3] Fan J(2011)Regularity criteria for the generalized magnetohydrodynamic equations and the quasi-geostrophic equations Taiwan. J. Math. 15 1059-1073
  • [4] Gao H(2007)Regularity criteria for the generalized viscous MHD equations Ann. I. H. Poincare-AN. 24 491-505
  • [5] Nakamura G(2011)Global regularity for a class of generalized magnetohydrodynamic equations J. Math. Fluid Mech. 13 295-305
  • [6] Zhou Y(2013)On two-dimensional magnetohydrodynamic equations with fractional diffusion Nonlinear Anal. 80 55-65
  • [7] Wu J(2013)On global regularity of 2D generalized magnetohydrodynamic equations J. Diff. Equat. 254 4194-4216
  • [8] Ji E(2014)Global regularity for the incompressible 2D generalized liquid crystal model with fractional diffusions Appl. Math. Lett. 35 18-23
  • [9] Tran CV(1988)Comutator estimates and the Euler and Navier-Stokes equations Comm. Pure Appl. Math. 41 891-907
  • [10] Yu X(undefined)undefined undefined undefined undefined-undefined