Connectedness of graphs arising from the dual Steenrod algebra

被引:0
作者
Donald M. Larson
机构
[1] The Catholic University of America,
来源
Journal of Homotopy and Related Structures | 2022年 / 17卷
关键词
Steenrod algebra; Hopf algebras; Graph theory; 55S10; 16T05; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
We establish connectedness criteria for graphs associated to monomials in certain quotients of the mod 2 dual Steenrod algebra A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {A}^*$$\end{document}. We also investigate questions about trees and Hamilton cycles in the context of these graphs. Finally, we improve upon a known connection between the graph theoretic interpretation of A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {A}^*$$\end{document} and its structure as a Hopf algebra.
引用
收藏
页码:145 / 161
页数:16
相关论文
共 4 条
[1]  
Bailey SM(2010)On the spectrum J. Pure Appl. Algebra 214 392-401
[2]  
Milnor J(1958)The Steenrod algebra and its dual Ann. Math. 2 150-171
[3]  
Wood RMW(1997)Differential operators and the Steenrod algebra Proc. London Math. Soc. (3) 75 194-220
[4]  
Wood RMW(1998)Problems in the Steenrod algebra Bull. London Math. Soc. 30 449-517