A regularity criterion for a 2D tropical climate model with fractional dissipation

被引:0
作者
Luca Bisconti
机构
[1] Università degli Studi di Firenze,Dipartimento di Matematica e Informatica “U. Dini”
来源
Monatshefte für Mathematik | 2021年 / 194卷
关键词
Regularity criterion; Tropical climate model; Tropical atmospheric dynamics; Navier–Stokes equations; 35Q35; 35Q30; 35B65; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
Tropical climate model derived by Frierson et al. (Commun Math Sci 2:591–626, 2004) and its modified versions have been investigated in a number of papers [see, e.g., Li and Titi (Discrete Contin Dyn Syst Series A 36(8):4495–4516, 2016), Wan (J Math Phys 57(2):021507, 2016), Ye (J Math Anal Appl 446:307–321, 2017) and more recently Dong et al. (Discrete Contin Dyn Syst Ser B 24(1):211–229, 2019)]. Here, we deal with the 2D tropical climate model with fractional dissipative terms in the equation of the barotropic mode u and in the equation of the first baroclinic mode v of the velocity, but without diffusion in the temperature equation, and we establish a regularity criterion for this system.
引用
收藏
页码:719 / 736
页数:17
相关论文
共 41 条
[1]  
Dong B(2019)Global regularity results for the climate model with fractional dissipation Discrete Contin. Dyn. Syst. Ser. B 24 211-229
[2]  
Wang W(2004)Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit Commun. Math. Sci. 2 591-626
[3]  
Wu J(2017)A regularity criterion in terms of pressure for the 3D viscous MHD equations Bull. Malays. Math. Sci. Soc. 40 1677-1690
[4]  
Zhang H(2016)A logarithmic regularity criterion for the two-dimensional MHD equations J. Math. Anal. Appl. 444 1752-1758
[5]  
Frierson D(2016)A new regularity criterion for the Navier–Stokes equations in terms of the two components of the velocity Electron. J. Qual. Theory Differ. Equ. 26 1-9
[6]  
Majda A(1988)Commutator estimates and the Euler and Navier–Stokes equations Commun. Pure Appl. Math. 41 891-907
[7]  
Pauluis O(1991)Well-posedness of the initial value problem for the Korteweg-deVries equation J. Am. Math. Soc. 4 323-347
[8]  
Gala S(2000)Bilinear estimates in BMO and the Navier–Stokes equations Math. Z. 235 173-194
[9]  
Ragusa MA(2002)The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations Math. Z. 242 251-278
[10]  
Zhang Z(2003)Navier–Stokes equations in the Besov space near Kyushu J. Math. 57 303-324