Exponent of Class Group of Certain Imaginary Quadratic Fields

被引:0
作者
Kalyan Chakraborty
Azizul Hoque
机构
[1] Homi Bhabha National Institute,Harish
来源
Czechoslovak Mathematical Journal | 2020年 / 70卷
关键词
quadratic field; discriminant; class group; Wada’s conjecture; 11R29; 11R11;
D O I
暂无
中图分类号
学科分类号
摘要
Let n > 1 be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form ℚ(x2−2yn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}\left( {\sqrt {{x^2} - 2{y^n}} } \right)$$\end{document} whose ideal class group has an element of order n. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.
引用
收藏
页码:1167 / 1178
页数:11
相关论文
共 26 条
[1]  
Ankeny N C(1955)On the divisibility of the class number of quadratic fields Pac. J. Math. 5 321-324
[2]  
Chowla S(2018)Class groups of imaginary quadratic fields of 3-rank at least 2 Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 179-183
[3]  
Chakraborty K(2018)Divisibility of the class numbers of imaginary quadratic fields J. Number Theory 185 339-348
[4]  
Hoque A(2002)On the class number of certain imaginary quadratic fields Proc. Am. Math. Soc. 130 1275-1277
[5]  
Chakraborty K(1978)Some results on the Mordell-Weil group of the Jacobian of the Fermat curve Invent. Math. 44 201-224
[6]  
Hoque A(2019)Divisibility of class numbers of certain families of quadratic fields J. Ramanujan Math. Soc. 34 281-289
[7]  
Kishi Y(2016)On the divisibility of class numbers of quadratic fields and the solvability of Diophantine equations SeMA J. 73 213-217
[8]  
Pandey P P(2011)On the divisibility of the class number of imaginary quadratic fields Proc. Japan Acad., Ser. A 87 142-143
[9]  
Cohn J H E(2011)A note on the divisibility of class numbers of imaginary quadratic fields Proc. Japan Acad., Ser. A 87 151-155
[10]  
Gross B H(2011)Remarks on the divisibility of the class numbers of imaginary quadratic fields Glasg. Math. J. 53 379-389