Single-image super-resolution using kernel recursive least squares

被引:0
|
作者
Jesna Anver
P. Abdulla
机构
[1] Cochin University of Science and Technology,Division of Electronics, School of Engineering
来源
Signal, Image and Video Processing | 2016年 / 10卷
关键词
Super-resolution; Approximate linear dependence kernel recursive least square; Sliding window kernel recursive least square; Kernel ; -means;
D O I
暂无
中图分类号
学科分类号
摘要
Online single-image super-resolution of an image has been obtained here. The high-resolution image is constructed from a dictionary of features that approximately spans the subspace of regression. This paper classifies the low-resolution image using the kernel k-means clustering algorithm and makes an extensive study using the approximate linear dependence kernel recursive least square and sliding window kernel recursive least squares for super-resolving the image from the existing low- and high-resolution images. The super-resolution using kernel recursive least square significantly provides an improvement up on the support vector regression solution, both in terms of speed, dictionary samples and also gives a better PSNR value.
引用
收藏
页码:1551 / 1558
页数:7
相关论文
共 50 条
  • [41] Computationally efficient progressive approach for single-image super-resolution using generative adversarial network
    Chudasama, Vishal
    Upla, Kishor
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (02)
  • [42] ROBUST SINGLE-IMAGE SUPER-RESOLUTION USING CROSS-SCALE SELF-SIMILARITY
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2135 - 2139
  • [43] COMBINING SINGLE-IMAGE AND MULTIVIEW SUPER-RESOLUTION FOR MIXED-RESOLUTION IMAGE PLUS DEPTH DATA
    Richter, Thomas
    Seiler, Juergen
    Schnurrer, Wolfgang
    Baetz, Michel
    Kaup, Andre
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1840 - 1844
  • [44] LEARNING SPARSE IMAGE REPRESENTATION WITH SUPPORT VECTOR REGRESSION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Yang, Ming-Chun
    Chu, Chao-Tsung
    Wang, Yu-Chiang Frank
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1973 - 1976
  • [45] Consistent Coding Scheme for Single-Image Super-Resolution Via Independent Dictionaries
    Yang, Wenming
    Tian, Yapeng
    Zhou, Fei
    Liao, Qingmin
    Chen, Hai
    Zheng, Chenglin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (03) : 313 - 325
  • [46] Deep artifact-free residual network for single-image super-resolution
    Hamdollah Nasrollahi
    Kamran Farajzadeh
    Vahid Hosseini
    Esmaeil Zarezadeh
    Milad Abdollahzadeh
    Signal, Image and Video Processing, 2020, 14 : 407 - 415
  • [47] Single-image super-resolution via selective multi-scale network
    Zewei He
    Binjie Ding
    Guizhong Fu
    Yanpeng Cao
    Jiangxin Yang
    Yanlong Cao
    Signal, Image and Video Processing, 2022, 16 : 937 - 945
  • [48] Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review
    Chauhan, Karansingh
    Patel, Shail Nimish
    Kumhar, Malaram
    Bhatia, Jitendra
    Tanwar, Sudeep
    Davidson, Innocent Ewean
    Mazibuko, Thokozile F. F.
    Sharma, Ravi
    IEEE ACCESS, 2023, 11 : 21811 - 21830
  • [49] Deep artifact-free residual network for single-image super-resolution
    Nasrollahi, Hamdollah
    Farajzadeh, Kamran
    Hosseini, Vahid
    Zarezadeh, Esmaeil
    Abdollahzadeh, Milad
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (02) : 407 - 415
  • [50] Attention Fusion Generative Adversarial Network for Single-Image Super-Resolution Reconstruction
    Peng Yanfei
    Zhang Pingjia
    Gao Yi
    Zi Lingling
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)