We study the radially symmetric Schrödinger equation
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ - \varepsilon ^{2} \Delta u + V{\left( {|x|} \right)}u = W{\left( {|x|} \right)}u^{p} ,\quad u > 0,\;\;u \in H^{1} ({\mathbb{R}}^{N} ), $$
\end{document} with N ≥ 1, ɛ > 0 and p > 1. As ɛ→ 0, we prove the existence of positive radially symmetric solutions concentrating simultaneously on k spheres. The radii are localized near non-degenerate critical points of the function \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\Gamma (r) = r^{{N - 1}} {\left[ {V(r)} \right]}^{{\frac{{p + 1}}{{p - 1}} - \frac{1}{2}}} {\left[ {W(r)} \right]}^{{ - \frac{2} {{p - 1}}}}. $$
\end{document}