Semiclassical symmetric Schrödinger equations: Existence of solutions concentrating simultaneously on several spheres

被引:0
作者
Thomas Bartsch
Shuangjie Peng
机构
[1] Universität Giessen,Mathematisches Institut
[2] Central China Normal University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2007年 / 58卷
关键词
35J60; 35J25; 35Q55; Nonlinear Schrödinger equation; radial solutions; spike-layer solutions; multi-peak solutions; variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
We study the radially symmetric Schrödinger equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \varepsilon ^{2} \Delta u + V{\left( {|x|} \right)}u = W{\left( {|x|} \right)}u^{p} ,\quad u > 0,\;\;u \in H^{1} ({\mathbb{R}}^{N} ), $$ \end{document} with N ≥ 1, ɛ > 0 and p > 1. As ɛ→ 0, we prove the existence of positive radially symmetric solutions concentrating simultaneously on k spheres. The radii are localized near non-degenerate critical points of the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Gamma (r) = r^{{N - 1}} {\left[ {V(r)} \right]}^{{\frac{{p + 1}}{{p - 1}} - \frac{1}{2}}} {\left[ {W(r)} \right]}^{{ - \frac{2} {{p - 1}}}}. $$ \end{document}
引用
收藏
页码:778 / 804
页数:26
相关论文
empty
未找到相关数据