New Conditions on Stable Recovery of Weighted Sparse Signals via Weighted l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} Minimization

被引:1
作者
Haiye Huo
Wenchang Sun
Li Xiao
机构
[1] Nanchang University,Department of Mathematics, School of Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
[3] University of Delaware,Department of Electrical and Computer Engineering
关键词
Compressed sensing; Null space property; Restricted isometry property; Weighted ; minimization; Weighted sparsity;
D O I
10.1007/s00034-017-0691-6
中图分类号
学科分类号
摘要
A problem of recovering weighted sparse signals via weighted l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} minimization has recently drawn considerable attention with application to function interpolation. The weighted robust null space property (NSP) of order s and the weighted restricted isometry property (RIP) with the weighted 3s-RIP constant δw,3s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{\mathbf {w},3s}$$\end{document} have been proposed and proved to be sufficient conditions for guaranteeing stable recovery of weighted s-sparse signals. In this paper, we propose two new sufficient conditions, i.e., the weighted lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_q$$\end{document}-robust NSP of order s and the weighted RIP with δw,2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{\mathbf {w},2s}$$\end{document}. Different from the existing results, the weighted lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_q$$\end{document}-robust NSP of order s is more general and weaker than the weighted robust NSP of order s, and the weighted RIP is characterized by δw,2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{\mathbf {w},2s}$$\end{document} instead of δw,3s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{\mathbf {w},3s}$$\end{document}. Accordingly, the reconstruction error estimations based on the newly proposed recovery conditions are also derived, respectively. Moreover, we demonstrate that the weighted RIP with small δw,2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{\mathbf {w},2s}$$\end{document} implies the weighted l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-robust NSP of order s.
引用
收藏
页码:2866 / 2883
页数:17
相关论文
共 67 条
[1]  
Aldroubi A(2012)Perturbations of measurement matrices and dictionaries in compressed sensing Appl. Comput. Harmon. Anal 33 282-291
[2]  
Chen X(2016)The sample complexity of weighted sparse approximation IEEE Trans. Signal Process. 64 3145-3155
[3]  
Powell AM(2010)New bounds for restricted isometry constants IEEE Trans. Inform. Theory 56 4388-4394
[4]  
Bah B(2013)Sharp RIP bound for sparse signal and low-rank matrix recovery Appl. Comput. Harmon. Anal. 35 74-93
[5]  
Ward R(2008)The restricted isometry property and its implications for compressed sensing C. R. Math. Acad. Sci. Paris 346 589-592
[6]  
Cai TT(2005)Decoding by linear programming IEEE Trans. Inform. Theory 51 4203-4215
[7]  
Wang L(2008)Prior image constrained compressed sening (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets Med. Phys. 35 660-663
[8]  
Xu G(2009)Compressed sensing and best J. Am. Math. Soc. 22 211-231
[9]  
Cai TT(2015)-term approximation Acta Numer. 24 1-159
[10]  
Zhang A(2009)Approximation of high-dimensional parametric PDEs IEEE Trans. Inform. Theory 55 2203-2214