Regular semigroups weakly generated by one element

被引:0
作者
Luís Oliveira
机构
[1] Universidade do Porto,CMUP, Departamento de Matemática, Faculdade de Ciências
来源
Semigroup Forum | 2023年 / 107卷
关键词
Regular semigroup; Weakly generated semigroup; Word problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the regular semigroups weakly generated by a single element x, that is, with no proper regular subsemigroup containing x. We show there exists a regular semigroup F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}$$\end{document} weakly generated by x such that all other regular semigroups weakly generated by x are homomorphic images of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}$$\end{document}. We define F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}$$\end{document} using a presentation where both sets of generators and relations are infinite. Nevertheless, the word problem for this presentation is decidable. We describe a canonical form for the congruence classes given by this presentation, and explain how to obtain it. We end the paper studying the structure of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}$$\end{document}. In particular, we show that the ‘free regular semigroup FI2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{FI}}_2$$\end{document} weakly generated by two idempotents’ is isomorphic to a regular subsemigroup of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}$$\end{document} weakly generated by {xx′,x′x}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{xx',x'x\}$$\end{document}.
引用
收藏
页码:525 / 563
页数:38
相关论文
共 6 条
[1]  
Hall T(1989)Identities for existence varieties of regular semigroups Bull. Austral. Math. Soc. 40 59-77
[2]  
Kad’ourek J(1990)A new approach in the theory of orthodox semigroups Semigroup Forum 40 257-296
[3]  
Szendrei MB(1942)On theories with a combinatorial definition of equivalence Ann. Math. 43 223-243
[4]  
Newman MHA(2023)Regular semigroups weakly generated by idempotents Internat. J. Algebra Comput. 33 851-891
[5]  
Oliveira L(1992)The existence of e-free objects in e-varieties of regular semigroups J. Algebra 164 471-484
[6]  
Yeh YT(undefined)undefined undefined undefined undefined-undefined