Role of MnO in manganese–borate binary glass systems: a study on structure and thermal properties

被引:1
作者
T Lewandowski
M Łapiński
M Walas
M Prześniak-Welenc
L Wicikowski
机构
[1] Gdansk University of Technology,Department of Solid State Physics
来源
Bulletin of Materials Science | 2017年 / 40卷
关键词
Mn; infrared spectroscopy; glass; thermal properties;
D O I
暂无
中图分类号
学科分类号
摘要
Structural and thermal properties of xMnO-(100-x)B2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\hbox {MnO}-(100-x)\hbox {B}_{2}\hbox {O}_{3}$$\end{document} (where x=40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=40$$\end{document}, 50 and 60 mol%) glass samples have been investigated with the employment of various techniques. Fourier transform infrared spectroscopy results revealed the influence of MnO on glass matrix. Decrease of B–O bond-related band intensities has been observed. MnO addition was found to introduce broken [BO2O-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {BO}_{2}\hbox {O}^{-}$$\end{document}]n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{{n}}$$\end{document} chains. Differential scanning calorimetry (DSC) measurements presented decreasing Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{g}}$$\end{document} that indicates depolymerization of glass matrix in the considered compositional range. Moreover, thermal stability (TS) parameter has been evaluated using the DSC technique. It slightly decreased with MnO content. X-ray photoelectron spectroscopy results provided the evidence for Mn2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Mn}^{2+}$$\end{document} and Mn3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Mn}^{3+}$$\end{document} presence. Multiplet splitting, close to that of MnO, has been observed. It has been concluded that most of the manganese ions existed in the divalent state. Photoluminescence study revealed that manganese ions are tetragonally co-ordinated in a glassy matrix.
引用
收藏
页码:933 / 938
页数:5
相关论文
共 79 条
  • [1] Singh N(2004)undefined Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 225 305-undefined
  • [2] Singh KJ(2012)undefined J. Appl. Sci. Res. 8 2325-undefined
  • [3] Singh K(2009)undefined J. Lumin. 129 277-undefined
  • [4] Singh H(2011)undefined J. Mod. Phys. 2 1062-undefined
  • [5] Marzouk SY(2011)undefined J. Magn. Magn. Mater. 323 451-undefined
  • [6] Soliman LI(2015)undefined J. Alloys Compd. 625 328-undefined
  • [7] Gaafar MS(2013)undefined J. Non-Cryst. Solids 376 18-undefined
  • [8] Zayed HA(2011)undefined J. Non-Cryst. Solids 357 836-undefined
  • [9] El-deen AHS(2015)undefined J. Lumin. 164 76-undefined
  • [10] Zhou Y(2015)undefined Appl. Radiat. Isot. 103 93-undefined