On the number of divisors which are values of a polynomial

被引:0
作者
Katalin Gyarmati
机构
[1] Alfred Renyi Institute of Mathematics,Number Theory Department
来源
The Ramanujan Journal | 2008年 / 17卷
关键词
Divisors; Polynomial; Extremal set theory; 11N56; 11N25;
D O I
暂无
中图分类号
学科分类号
摘要
Let τ(n) be the number of positive divisors of an integer n, and for a polynomial P(X)∈ℤ[X], let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau_{P}(n)=\left\vert{\left\{{P(m)>0:\ m\in\mathbb{Z},P(m)\mid n}\right\}}\right\vert.$$\end{document} R. de la Bretèche studied the maximum values of τP(n) in intervals. Here the following is proved: if P(X)∈ℤ[X] is not of the form a(X+b)k with a,b∈ℚ, and k∈ℕ then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau_{P}(n)\ll(\log n)\tau(n)^{3/5}.$$\end{document} This improves partially on La Bretèche’s results.
引用
收藏
页码:387 / 403
页数:16
相关论文
共 23 条
[1]  
Bugeaud Y.(2003)On a problem of Diophantus for higher powers Math. Proc. Camb. Philos. Soc. 135 1-10
[2]  
Dujella A.(2004)On generalizations of a problem of Diophantus Ill. J. Math. 48 1105-1115
[3]  
Bugeaud Y.(2001)Binary J. Comb. Theory Ser. A 94 152-155
[4]  
Gyarmati K.(2000)-sequences: a new upper bound Indag. Math. New Ser. 11 437-452
[5]  
Cohen G.(2001)Sur une classe de fonctions arithmétiques liées aux diviseurs d’un entier Math. Proc. Camb. Philos. Soc. 131 193-209
[6]  
Litsyn S.(1997)Nombre de valeurs polynomials qui divisent un entier Acta Arith. 81 69-79
[7]  
Zémor G.(2001)On Diophantine quintuples J. Number Theory 89 126-150
[8]  
de la Bretèche R.(1978)An absolute bound for the size of Diophantine J. Aust. Math. Soc. Ser. A 25 479-485
[9]  
de la Bretèche R.(1989)-tuples J. Number Theory 31 285-311
[10]  
Dujella A.(1984)On some unconventional problems on the divisors of integers Invent. Math. 75 561-584