Interior Estimates for the First-Order Differences for Finite-Difference Approximations for Elliptic Bellman’s Equations

被引:0
作者
N. V. Krylov
机构
[1] University of Minnesota,
来源
Applied Mathematics & Optimization | 2012年 / 65卷
关键词
Fully nonlinear elliptic equations; Bellman’s equations; Finite differences;
D O I
暂无
中图分类号
学科分类号
摘要
We establish interior estimates for the first-order finite differences of solutions of finite-difference approximations for uniformly elliptic Bellman’s equations.
引用
收藏
页码:349 / 370
页数:21
相关论文
共 10 条
[1]  
Barles G.(2007)Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations Math. Comput. 76 1861-1893
[2]  
Jakobsen E.R.(2007)The rate of convergence of finite-difference approximations for parabolic Bellman equations with Lipschitz coefficients in cylindrical domains Appl. Math. Optim. 56 37-66
[3]  
Dong H.(1997)On the rate of convergence of finite-difference approximations for Bellman’s equations Algebra Anal., St. Petersb. Math. J. 9 245-256
[4]  
Krylov N.V.(1999)Approximating value functions for controlled degenerate diffusion processes by using piece-wise constant policies Electron. J. Probab. 4 1-19
[5]  
Krylov N.V.(2000)On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients Probab. Theory Relat. Fields 117 1-16
[6]  
Krylov N.V.(2005)The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients Appl. Math. Optim. 52 365-399
[7]  
Krylov N.V.(2007)A priori estimates of smoothness of solutions to difference Bellman equations with linear and quasi-linear operators Math. Comput. 76 669-698
[8]  
Krylov N.V.(2008)On factorizations of smooth nonnegative matrix-values functions and on smooth functions with values in polyhedra Appl. Math. Optim. 58 373-392
[9]  
Krylov N.V.(undefined)undefined undefined undefined undefined-undefined
[10]  
Krylov N.V.(undefined)undefined undefined undefined undefined-undefined