Walsh-Lebesgue points of multi-dimensional functionsО точках Уолща-Лебега функций нескольких переменных

被引:0
作者
Ferenc Weisz
机构
[1] Eötvös L. University,Department of Numerical Analysis
来源
Analysis Mathematica | 2008年 / 34卷
关键词
Fourier Series; Hardy Space; Summability Method; Lebesgue Point; Dyadic Interval;
D O I
暂无
中图分类号
学科分类号
摘要
Walsh-Lebesgue points are introduced for higher dimensions and it is proved that a.e. point is a Walsh-Lebesgue point of a function f from the Hardy space H1i[0, 1)d, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_1^i [0,1]^d \supset L(\log L)^{d - 1} [0,1)^d for all i = 1,...,d $$\end{document}. Every function f ∈ H1i[0, 1)d is Fejér summable at each Walsh-Lebesgue point. Similar theorem is verified for ϑ-summability.
引用
收藏
页码:307 / 324
页数:17
相关论文
共 24 条
[11]  
Lebesgue H.(1975)-dimensional Walsh-Fourier series Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 189-195
[12]  
Marcinkiewicz J.(1997)Recherches sur la convergence des séries de Fourier Automatica 33 2019-2024
[13]  
Zygmund A.(1985)On the summability of double Fourier series Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 27 87-101
[14]  
Schipp F.(2001)Über gewissen Maximaloperatoren Acta Math. Hungar. 91 131-158
[15]  
Schipp F.(2001) system approximation algorithms generated by Acta Math. Hungar. 91 159-186
[16]  
Bokor J.(1989) summations Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 32 243-256
[17]  
Simon P.(1997)Investigations with respect to the Vilenkin system J. Approx. Theory 88 168-192
[18]  
Szili L.(2006)On the summability of trigonometric interpolation processes East J. Approx. 6 129-156
[19]  
Szili L.(2004)On uniform convergence of sequences of certain linear operators Acta Math. Hungar. 103 139-176
[20]  
Vértesi P.(undefined)Convergence of singular integrals undefined undefined undefined-undefined