Walsh-Lebesgue points of multi-dimensional functionsО точках Уолща-Лебега функций нескольких переменных

被引:0
作者
Ferenc Weisz
机构
[1] Eötvös L. University,Department of Numerical Analysis
来源
Analysis Mathematica | 2008年 / 34卷
关键词
Fourier Series; Hardy Space; Summability Method; Lebesgue Point; Dyadic Interval;
D O I
暂无
中图分类号
学科分类号
摘要
Walsh-Lebesgue points are introduced for higher dimensions and it is proved that a.e. point is a Walsh-Lebesgue point of a function f from the Hardy space H1i[0, 1)d, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_1^i [0,1]^d \supset L(\log L)^{d - 1} [0,1)^d for all i = 1,...,d $$\end{document}. Every function f ∈ H1i[0, 1)d is Fejér summable at each Walsh-Lebesgue point. Similar theorem is verified for ϑ-summability.
引用
收藏
页码:307 / 324
页数:17
相关论文
共 24 条
[1]  
Butzer P. L.(1973)Walsh series and the concept of a derivative Applic, Anal. 3 29-46
[2]  
Wagner H. J.(1971)On the convergence of multiple Fourier series Bull. Amer. Math. Soc. 77 744-745
[3]  
Fefferman C.(1971)On the divergence of multiple Fourier series Bull. Amer. Math. Soc. 77 191-195
[4]  
Fefferman C.(2006)Wiener amalgams and pointwise summability of Fourier transforms and Fourier series Math. Proc. Camb. Phil. Soc. 140 509-536
[5]  
Feichtinger H. G.(1904)Untersuchungen über Fouriersche Reihen Math. Ann. 58 51-69
[6]  
Weisz F.(1955)Cesàro summability of Walsh-Fourier series Proc. Nat. Acad. Sci. USA 41 558-591
[7]  
Fejér L.(2000)On the divergence of the ( Proc. Amer. Math. Soc. 128 1711-1720
[8]  
Fine N. J.(2001), 1) means of double Walsh-Fourier series Analysis Math. 27 157-171
[9]  
Gát G.(1905)Divergence of the ( Math. Ann. 61 251-280
[10]  
Gát G.(1939), 1) means of Fund. Math. 32 122-132