Certain maps preserving self-homotopy equivalences

被引:0
作者
Jin-ho Lee
Toshihiro Yamaguchi
机构
[1] Korea University,Department of Mathematics
[2] Kochi University,Faculty of Education
来源
Journal of Homotopy and Related Structures | 2017年 / 12卷
关键词
Self homotopy equivalence; -Map; Co-; -map; Rational homotopy; Sullivan (minimal) model; Rational ; -map; Rational co-; -map; Rationally ; -equivalent; 55P62; 55P10;
D O I
暂无
中图分类号
学科分类号
摘要
Let E(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}(X)$$\end{document} be the group of homotopy classes of self homotopy equivalences for a connected CW complex X. We consider two classes of maps, E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}$$\end{document}-maps and co-E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}$$\end{document}-maps. They are defined as the maps X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\rightarrow Y$$\end{document} that induce homomorphisms E(X)→E(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}(X)\rightarrow \mathcal {E}( Y)$$\end{document} and E(Y)→E(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}(Y)\rightarrow \mathcal {E}(X)$$\end{document}, respectively. We give some rationalized examples related to spheres, Lie groups and homogeneous spaces by using Sullivan models. Furthermore, we introduce an E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}$$\end{document}-equivalence relation between rationalized spaces XQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{{\mathbb Q}}$$\end{document} and YQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{{\mathbb Q}}$$\end{document} as a geometric realization of an isomorphism E(XQ)≅E(YQ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}(X_{{\mathbb Q}})\cong \mathcal {E}(Y_{{\mathbb Q}})$$\end{document}.
引用
收藏
页码:691 / 706
页数:15
相关论文
共 14 条
  • [1] Arkowitz M(2000)Rational obstruction theory and rational homotopy sets Math. Z. 235 525-539
  • [2] Lupton G(2009)Rational self-homotopy equivalences and Whitehead exact sequence J. Homotopy Relat. Struct. 4 111-121
  • [3] Benkhalifa M(2010)Realizability of the group of rational self-homotopy equivalences J. Homotopy Relat. Struct. 5 361-372
  • [4] Benkhalifa M(2015)The effect of cell-attachment on the group of self-equivalences of an R-localized space J. Homotopy Relat. Struct. 10 549-564
  • [5] Benkhalifa M(2014)Every finite group is the group of self homotopy equivalences of an elliptic space Acta Math. 213 49-62
  • [6] Smith SB(2006)The groups of self pair homotopy equivalences J. Korean Math. Soc. 43 491-506
  • [7] Costoya C(2013)The set of cyclic-element preserving maps Topol. Appl. 160 794-805
  • [8] Viruel A(1977)Infinitesimal computations in topology Inst. Hautes Études Sci. Publ. Math. 47 269-331
  • [9] Lee K(1976)The homology theory of the closed geodesic problem J. Differ. Geom. 11 633-644
  • [10] Kim J(undefined)undefined undefined undefined undefined-undefined