Uniqueness of weak solutions of time-dependent 3-D Ginzburg-Landau model for superconductivity

被引:0
作者
Fan J. [1 ]
Gao H. [2 ]
机构
[1] College of Information Sciences and Technology, Nanjing Forestry University
[2] Institute of Mathematics, School of Mathematics and Computer Sciences, Nanjing Normal University
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Ginzburg-Landau model; Lorentz gauge; Superconductivity; Uniqueness;
D O I
10.1007/s11464-007-0013-6
中图分类号
学科分类号
摘要
We prove the uniqueness of weak solutions of the time-dependent 3-D Ginzburg-Landau model for superconductivity with (Ψ 0, A 0) L 2(Ω) initial data under the hypothesis that (Ψ, A) C([0, T]; L 3(Ω)) using the Lorentz gauge. © Higher Education Press 2007.
引用
收藏
页码:183 / 189
页数:6
相关论文
共 12 条
[1]  
Chen Z.M., Elliott C., Tang Q., Justification of a two-dimensional evolutionary Ginzburg-Landau superconductivity model, RAIRO Model. Math Anal Numer, 32, pp. 25-50, (1998)
[2]  
Chen Z.M., Hoffmann K.H., Liang J., On a nonstationary Ginzburg-Landau super-conductivity model, Math Meth Appl Sci, 16, pp. 855-875, (1993)
[3]  
Tang Q., On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux, Comm PDE, 20, pp. 1-36, (1995)
[4]  
Du Q., Global existence an uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity, Appl Anal, 521, pp. 1-17, (1994)
[5]  
Liang J., The regularity of solutions for the curl boundary problems and Ginzburg-Landau superconductivity model, Math Model Meth Appl Sci, 5, pp. 528-542, (1995)
[6]  
Tang Q., Wang S., Time dependent Ginzburg-Landau equation of superconductivity, Physica D, 88, pp. 139-166, (1995)
[7]  
Fan J., Jiang S., Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity, Appl Math Lett, 16, pp. 435-440, (2003)
[8]  
Zaouch F., Time-periodic solutions of the time-dependent Ginzburg-Landau equations of surperconductivity, Z Angew Math Phys, 54, pp. 905-918, (2003)
[9]  
Phillips D., Shin E., On the analysis of a non-isothermal model for superconductivity, Euro J Appl Math, 15, pp. 147-179, (2004)
[10]  
Chen Z.M., Hoffmann K.H., Global classical solutions to a non-isothermal dynamical Ginzburg-Landau model in superconductivity, Numer Funct Anal Optimiz, 18, pp. 901-920, (1997)