On Connected Components of Skew Group Algebras

被引:0
作者
Jian Min Chen
Qiang Dong
Ya Nan Lin
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2023年 / 39卷
关键词
Smash product; skew group algebra; -translation algebra; path algebra; connected component; 16G20; 16S35; 16W50; 16D90;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a basic connected finite dimensional associative algebra over an algebraically closed field k and G be a cyclic group. There is a quiver QG with relations ρG such that the skew group algebras A[G] is Morita equivalent to the quotient algebra of path algebra kQG modulo ideal (ρG). Generally, the quiver QG is not connected. In this paper we develop a method to determine the number of connect components of QG. Meanwhile, we introduce the notion of weight for underlying quiver of A such that A is G-graded and determine the connect components of smash product A#kG*.
引用
收藏
页码:799 / 813
页数:14
相关论文
共 8 条
  • [1] Cohen M(1984)Group-graded rings, smash products, and group actions Transactions of the American Mathematical Society 282 237-258
  • [2] Montgomery S(2010)Skew group algebras of path algebras and preprojective algebras Journal of Algebra 323 1052-1059
  • [3] Demonet L(2012)Coverings and truncations of graded self-injective algebras Journal of Algebra 355 9-34
  • [4] Guo J Y(2016)On Journal of Algebra 453 400-428
  • [5] Guo J Y(1932)-translation algebras Verhandlungen des Internationalen Mathematiker Kongresses Zürich 1 189-194
  • [6] Noether E(1985)Hyperkomplexe systeme in ihren beziehungen zur kommutativen algebra und zahlentheorie Journal of Algebra 92 224-282
  • [7] Reiten I(undefined)Skew group algebras in the representation theory of artin algebras undefined undefined undefined-undefined
  • [8] Riedtmann C(undefined)undefined undefined undefined undefined-undefined