Lower bounds for linear forms in values of certain hypergeometric functions

被引:0
作者
Hessami Pilehrood T.G. [1 ]
机构
[1] M. V. Lomonosov Moscow State University,
关键词
Estimate of a linear form; Hypergeometric function; Padé; approximation;
D O I
10.1007/BF02676673
中图分类号
学科分类号
摘要
By using Padé approximations of the first kind, a lower bound for the modulus of a linear form with integer coefficients in the values of certain hypergeometric functions at a rational point are obtained. This estimate depends on all the coefficients of the linear form. ©2000 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:372 / 381
页数:9
相关论文
共 7 条
  • [1] Baker A., On some Diophantine inequalities involving the exponential function, Canadian J. Math., 17, pp. 616-626, (1965)
  • [2] Fel'dman N.I., On a certain linear form, Acta Arith., 21, pp. 347-355, (1972)
  • [3] Sorokin V.N., On the irrationality of values of hypergeometric functions, Mat. Sb. [Math. USSR-Sb.], 127, 2-6, pp. 245-258, (1985)
  • [4] Hessami Pilchrood T.G., Lower bound for a linear form, Mat. Zametki [Math. Notes], 66, 4, pp. 617-623, (1999)
  • [5] Chudnovsky D.V., Chudnovsky G.V., Applications of Padé approximations to Diophantine inequalities in values of G-functions, Lecture Notes in Math., 1135, pp. 9-51, (1985)
  • [6] Fel'dman N.I., Hilbert's Seventh Problem [in Russian], (1982)
  • [7] Alladi K., Robinson M., Legendre polynomials and irrationality, J. Reine Angew. Math., 318, pp. 137-155, (1980)