This paper invents the notion of torified varieties: A torification of a scheme is a decomposition of the scheme into split tori. A torified variety is a reduced scheme of finite type over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb Z}$$\end{document} that admits a torification. Toric varieties, split Chevalley schemes and flag varieties are examples of this type of scheme. Given a torified variety whose torification is compatible with an affine open covering, we construct a gadget in the sense of Connes–Consani and an object in the sense of Soulé and show that both are varieties over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{F}_1}$$\end{document} in the corresponding notion. Since toric varieties and split Chevalley schemes satisfy the compatibility condition, we shed new light on all examples of varieties over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{F}_1}$$\end{document} in the literature so far. Furthermore, we compare Connes–Consani’s geometry, Soulé’s geometry and Deitmar’s geometry, and we discuss to what extent Chevalley groups can be realized as group objects over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{F}_1}$$\end{document} in the given categories.