Torified varieties and their geometries over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_1}$$\end{document}

被引:0
作者
Javier López Peña
Oliver Lorscheid
机构
[1] Queen Mary University of London,Mathematics Research Centre
[2] Max-Planck Institut für Mathematik,undefined
关键词
Abelian Group; Zeta Function; Irreducible Component; Toric Variety; Universal Property;
D O I
10.1007/s00209-009-0638-0
中图分类号
学科分类号
摘要
This paper invents the notion of torified varieties: A torification of a scheme is a decomposition of the scheme into split tori. A torified variety is a reduced scheme of finite type over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}$$\end{document} that admits a torification. Toric varieties, split Chevalley schemes and flag varieties are examples of this type of scheme. Given a torified variety whose torification is compatible with an affine open covering, we construct a gadget in the sense of Connes–Consani and an object in the sense of Soulé and show that both are varieties over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_1}$$\end{document} in the corresponding notion. Since toric varieties and split Chevalley schemes satisfy the compatibility condition, we shed new light on all examples of varieties over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_1}$$\end{document} in the literature so far. Furthermore, we compare Connes–Consani’s geometry, Soulé’s geometry and Deitmar’s geometry, and we discuss to what extent Chevalley groups can be realized as group objects over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_1}$$\end{document} in the given categories.
引用
收藏
页码:605 / 643
页数:38
相关论文
共 6 条
  • [1] Deitmar A.(2008)-schemes and toric varieties Contrib. Algebra Geom. 49 517-525
  • [2] Demazure M.(1970)Sous-groupes algébriques de rang maximum du groupe de Cremona Ann. Sci. École Norm. Sup. 4 507-588
  • [3] Kurokawa N.(2005)Zeta functions over Proc. Jpn. Acad. Ser. A Math. Sci. 81 180-184
  • [4] Manin Y.(1995)Lectures on zeta functions and motives (according to Deninger and Kurokawa) Asterisque 228 121-163
  • [5] Shai Haran M.J.(2007)Non-additive geometry Compos. Math. 143 618-688
  • [6] Soulé C.(2004)Les variétés sur le corps à un élément Mosc. Math. J. 4 217-244