Velocity diagram of traveling waves for discrete reaction–diffusion equations

被引:0
作者
M. Al Haj
R. Monneau
机构
[1] Lebanese University,Faculty of Science (section 5)
[2] CERMICS,undefined
[3] Université Paris-Est,undefined
[4] Ecole des Ponts ParisTech,undefined
[5] et CEREMADE,undefined
[6] Université Paris-Dauphine,undefined
[7] Place du Maréchal De Lattre De Tassigny,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 2023年 / 30卷
关键词
Velocity diagram; Traveling waves; Degenerate monostable nonlinearity; Bistable non-linearity; Frenkel–Kontorova model; Viscosity solutions; Perron’s method; 35D40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a discrete version of reaction-diffusion equations. A typical example is the fully overdamped Frenkel–Kontorova model, where the velocity is proportional to the force. We also introduce an additional exterior force denoted by σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. For general discrete and fully nonlinear dynamics, we study traveling waves of velocity c=c(σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=c(\sigma )$$\end{document} depending on the parameter σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. Under certain assumptions, we show properties of the velocity diagram c(σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(\sigma )$$\end{document} for σ∈[σ-,σ+]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in [\sigma ^-,\sigma ^+]$$\end{document}. We show that the velocity c is nondecreasing in σ∈(σ-,σ+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in (\sigma ^-,\sigma ^+)$$\end{document} in the bistable regime, with vertical branches c≥c+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\ge c^+$$\end{document} for σ=σ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\sigma ^+$$\end{document} and c≤c-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\le c^-$$\end{document} for σ=σ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\sigma ^-$$\end{document} in the monostable regime.
引用
收藏
相关论文
共 47 条
  • [11] Chen X(2008)Front propagation for discrete periodic monostable equations Osaka J. Math. 45 327-346
  • [12] Guo JS(2010)Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system Discrete Contin. Dyn. Syst. 26 197-223
  • [13] Chen X(2001)Front propagation for a two dimensional periodic monostable lattice dynamical system Arch. Ration. Mech. Anal. 157 91-163
  • [14] Guo JS(2010)Travelling fronts and entire solutions of the Fisher-KPP equation in Discrete Contin. Dyn. Syst. 26 265-290
  • [15] Chen X(1994)Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities Commun Appl. Nonlinear Anal. 1 23-46
  • [16] Guo JS(2005)Existence of traveling waves for a generalized discrete Fisher’s equation Math. Biosci. 196 82-98
  • [17] Wu C-C(1982)Spreading speeds as slowest wave speeds for cooperative systems SIAM J. Math. Anal. 13 353-396
  • [18] Forcadel N(2009)Long-time behavior of a class of biological models Publ. Res. Inst. Math. Sci. 45 925-953
  • [19] Imbert C(1993)Existence and Nonexistence of traveling waves for a nonlocal monostable equation J. Differ. Equ. 105 46-62
  • [20] Monneau R(undefined)Traveling wavefronts for the discrete Fisher’s equation undefined undefined undefined-undefined