Velocity diagram of traveling waves for discrete reaction–diffusion equations

被引:0
作者
M. Al Haj
R. Monneau
机构
[1] Lebanese University,Faculty of Science (section 5)
[2] CERMICS,undefined
[3] Université Paris-Est,undefined
[4] Ecole des Ponts ParisTech,undefined
[5] et CEREMADE,undefined
[6] Université Paris-Dauphine,undefined
[7] Place du Maréchal De Lattre De Tassigny,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 2023年 / 30卷
关键词
Velocity diagram; Traveling waves; Degenerate monostable nonlinearity; Bistable non-linearity; Frenkel–Kontorova model; Viscosity solutions; Perron’s method; 35D40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a discrete version of reaction-diffusion equations. A typical example is the fully overdamped Frenkel–Kontorova model, where the velocity is proportional to the force. We also introduce an additional exterior force denoted by σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. For general discrete and fully nonlinear dynamics, we study traveling waves of velocity c=c(σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=c(\sigma )$$\end{document} depending on the parameter σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. Under certain assumptions, we show properties of the velocity diagram c(σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(\sigma )$$\end{document} for σ∈[σ-,σ+]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in [\sigma ^-,\sigma ^+]$$\end{document}. We show that the velocity c is nondecreasing in σ∈(σ-,σ+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in (\sigma ^-,\sigma ^+)$$\end{document} in the bistable regime, with vertical branches c≥c+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\ge c^+$$\end{document} for σ=σ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\sigma ^+$$\end{document} and c≤c-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\le c^-$$\end{document} for σ=σ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\sigma ^-$$\end{document} in the monostable regime.
引用
收藏
相关论文
共 47 条
  • [1] Al Haj M(2013)Existence and uniqueness of traveling waves for fully overdamped Frenkel–Kontorova models Arch. Ration. Mech. Anal. 210 45-99
  • [2] Forcadel N(2000)Wave solutions for a discrete reaction–diffusion equation Eur. J. Appl. Math. 11 399-412
  • [3] Monneau R(2006)Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices SIAM J. Math. Anal. 38 233-258
  • [4] Carpio A(2002)Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations J. Differ. Equ. 184 549-569
  • [5] Chapman S(2003)Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics Math. Ann. 326 123-146
  • [6] Hastings S(2008)Traveling waves in discrete periodic media for bistable dynamics Arch. Ration. Mech. Anal. 189 189-236
  • [7] Mcleod JB(2009)Homogenization of fully overdamped Frenkel–Kontorova models J. Differ. Equ. 246 1057-1097
  • [8] Chen X(2012)Homogenization of accelerated Frenkel–Kontorova models with Trans. Am. Math. Soc. 364 6187-6227
  • [9] Fu S-C(2002) types particles Nonlinear Anal. 48 1137-1149
  • [10] Guo JS(2006)Traveling wave solutions for some discrete quasilinear parabolic equations Math. Ann. 335 489-525