A Bound on the Number of Conjugacy Classes of Non-normal Cyclic Subgroups of a Finite p-Group

被引:0
作者
Hamid Mousavi
Hadi Ahmadi
机构
[1] University of Tabriz,Department of Mathematical Sciences
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Finite ; -groups; non-normal subgroups; conjugacy class of subgroups; Primary 20D15 Secondary 20E45;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite p-group of odd order and let νc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _c(G)$$\end{document} be the number of conjugacy classes of non-normal cyclic subgroups of G. In this paper, among other results, we obtain a lower bound for νc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _c(G)$$\end{document}. More precisely, if |G′|=pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G'|=p^k$$\end{document}, for some integer k, then we prove that νc(G)≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _c(G)\ge k$$\end{document}.
引用
收藏
相关论文
共 25 条
  • [11] La Haye R(2014)The breadth and the class of a finite p-group Bull. Iran. Math. Soc. 5 1291-1300
  • [12] La Haye R(2014)On finite groups with few non-normal subgroups Int. J. Group Theory 3 1-7
  • [13] Rhemtulla A(2010)Nilpotent groups with three conjugacy classes of non-normal subgroups Note di Mat. 30 121-133
  • [14] Leedham-Green CR(1996)Non-nilpotent groups with three conjugacy classes of non-normal subgroups Commun. Algebra 24 3237-3245
  • [15] Neumann PM(1998)Groups with few non-normal cyclic subgroups J. Group Theory 12 165-171
  • [16] Wiegold J(undefined)The number of conjugacy classes of non-normal subgroups in nilpotent groups undefined undefined undefined-undefined
  • [17] Mousavi H(undefined)The number of conjugacy classes of non-normal cyclic subgroups in nilpotent groups of odd order undefined undefined undefined-undefined
  • [18] Mousavi H(undefined)undefined undefined undefined undefined-undefined
  • [19] Mousavi H(undefined)undefined undefined undefined undefined-undefined
  • [20] Oggionni D(undefined)undefined undefined undefined undefined-undefined