A Bound on the Number of Conjugacy Classes of Non-normal Cyclic Subgroups of a Finite p-Group

被引:0
作者
Hamid Mousavi
Hadi Ahmadi
机构
[1] University of Tabriz,Department of Mathematical Sciences
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Finite ; -groups; non-normal subgroups; conjugacy class of subgroups; Primary 20D15 Secondary 20E45;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite p-group of odd order and let νc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _c(G)$$\end{document} be the number of conjugacy classes of non-normal cyclic subgroups of G. In this paper, among other results, we obtain a lower bound for νc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _c(G)$$\end{document}. More precisely, if |G′|=pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G'|=p^k$$\end{document}, for some integer k, then we prove that νc(G)≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _c(G)\ge k$$\end{document}.
引用
收藏
相关论文
共 25 条
  • [1] Blackburn N(1966)Finite groups in which the non-normal subgroups have nontrivial intersection J. Algebra 3 30-37
  • [2] Brandl R(1995)Groups with few non-normal subgroups Commun. Algebra 6 2091-2098
  • [3] Brandl R(2013)Conjugacy classes of non-normal subgroups of finite Isr. J. Math. 195 473-479
  • [4] Felsch W(1981)-groups J. Lond. Math. Soc. 2 113-122
  • [5] Neubüser J(2008)Space groups and groups of prime-power order IV. Counterexamples to the class-breadth conjecture J. Group Theory 11 381-397
  • [6] Plesken W(2010)Conjugacy classes of non-normal subgroups in finite nilpotent groups Isr. J. Math. 180 189-192
  • [7] Fernandez-Alcober GA(1997)The finite p-groups with Commun. Algebra 12 3803-3821
  • [8] Legarreta L(1999) conjugacy classes of non-normal subgroups J. Algebra 1 41-63
  • [9] Fernandez-Alcober GA(1969)Some explicit bounds in groups with a finite number of non-normal subgroups J. Lond. Math. Soc. 2 409-420
  • [10] Legarreta L(1999)Groups with a bounded number of conjugacy classes of non-normal subgroups Commun. Algebra 7 3143-3151