Fixed points of completely positive maps and their dual maps

被引:0
作者
Haiyan Zhang
Yanni Dou
机构
[1] Shangqiu Normal University,School of Mathematics and Statistics
[2] Shaanxi Normal University,School of Mathematics and Statistics
来源
Journal of Inequalities and Applications | / 2022卷
关键词
Quantum operation; Dual operation; Fixed point; Compact operator; 47A05; 47A62;
D O I
暂无
中图分类号
学科分类号
摘要
Let A⊂B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A} \subset{\mathcal {B}}(\mathcal {H})$\end{document} be a row contraction and ΦA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}$\end{document} determined by A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document} be a completely positive map on B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal {B}}(\mathcal {H})$\end{document}. In this paper, we mainly consider fixed points of ΦA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}$\end{document} and its dual map ΦA†\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}^{\dagger}$\end{document}. It is given that ΦA(X)≤X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}(X)\leq X $\end{document} (or ΦA(X)≥X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}(X)\geq X $\end{document}) implies ΦA(X)=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}(X)= X$\end{document} and ΦA†(X)=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}^{\dagger}(X)= X$\end{document} when X∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X\in {\mathcal {B}}(\mathcal {H})$\end{document} is a compact operator. Some necessary conditions of ΦA(X)=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}(X)= X$\end{document} and ΦA†(X)=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi _{\mathcal {A}}^{\dagger}(X)= X$\end{document} are given.
引用
收藏
相关论文
共 14 条
  • [1] Arias A.(2002)Fixed points of quantum operations J. Math. Phys. 43 5872-5881
  • [2] Gheondea A.(1975)Completely positive linear maps on complex matrices Linear Algebra Appl. 10 285-290
  • [3] Gudder S.(1971)General state changes in quantum theory Ann. Phys. 64 311-355
  • [4] Choi M.D.(2011)Fixed points of dual quantum operations Math. Phys. Anal. Geom. 382 172-179
  • [5] Kraus K.(2011)Characterizations of fixed points of quantum operations J. Math. Phys. 52 1291-1302
  • [6] Li Y.(2012)Fixed points of normal completely positive maps on J. Math. Anal. Appl. 389 87-129
  • [7] Li Y.(2003)Similarity and ergodic theory of positive linear maps J. Reine Angew. Math. 561 1626-1641
  • [8] Magajna B.(2008)Toeplitz operators associated to commuting row contractions J. Funct. Anal. 254 111-117
  • [9] Popescu G.(2012)A note on fixed points of general quantum operations Rep. Math. Phys. 70 404-411
  • [10] Prunaru B.(2016)Fixed points of trace preserving completely positive maps Linear Multilinear Algebra 64 undefined-undefined