Preduals of Spaces of Vector-Valued Holomorphic Functions
被引:0
|
作者:
Christopher Boyd
论文数: 0引用数: 0
h-index: 0
机构:University College Dublin,Department of Mathematics
Christopher Boyd
机构:
[1] University College Dublin,Department of Mathematics
来源:
Czechoslovak Mathematical Journal
|
2003年
/
53卷
关键词:
holomorphic functions;
Fréchet spaces;
preduals;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
For U a balanced open subset of a Fréchet space E and F a dual-Banach space we introduce the topology τγ on the space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$H\left( {U,F} \right)$$
\end{document} of holomorphic functions from U into F. This topology allows us to construct a predual for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left( {H\left( {U,F} \right),\tau \delta } \right)$$
\end{document} which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions.