Preduals of Spaces of Vector-Valued Holomorphic Functions

被引:0
|
作者
Christopher Boyd
机构
[1] University College Dublin,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2003年 / 53卷
关键词
holomorphic functions; Fréchet spaces; preduals;
D O I
暂无
中图分类号
学科分类号
摘要
For U a balanced open subset of a Fréchet space E and F a dual-Banach space we introduce the topology τγ on the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H\left( {U,F} \right)$$ \end{document} of holomorphic functions from U into F. This topology allows us to construct a predual for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {H\left( {U,F} \right),\tau \delta } \right)$$ \end{document} which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions.
引用
收藏
页码:365 / 376
页数:11
相关论文
共 50 条