Representing by several orthogonal polynomials for sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials

被引:0
作者
Taekyun Kim
Dae San Kim
Lee-Chae Jang
D. V. Dolgy
机构
[1] Kwangwoon University,Department of Mathematics
[2] Sogang University,Department of Mathematics
[3] Konkuk University,Graduate School of Education
[4] Kwangwoon University,Hanrimwon
来源
Advances in Difference Equations | / 2019卷
关键词
Lucas polynomials; Chebyshev polynomials of the first kind; Sums of finite products; Orthogonal polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate sums of finite products of Chebyshev polynomials of the first kind and those of Lucas polynomials. We express each of them as linear combinations of Hermite, extended Laguerre, Legendre, Gegenbauer, and Jacobi polynomials whose coefficients involve some terminating hypergeometric functions F11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{1}F_{1}$\end{document} and F12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{2}F_{1}$\end{document}. These are obtained by means of explicit computations.
引用
收藏
相关论文
共 82 条
[1]  
Agarwal R.P.(2017)Sums of finite products of Bernoulli functions Adv. Differ. Equ. 2017 1-3
[2]  
Kim D.S.(2013)The Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials Turk. J. Anal. Number Theory 1 172-180
[3]  
Kim T.(2018)Connection problem for sums of finite products of Chebyshev polynomials of the third and fourth kinds Symmetry 10 321-335
[4]  
Kwon J.(2016)A new class of Laguerre-based Apostol type polynomials Cogent Math. 3 551-565
[5]  
Araci S.(2014)Some identities for Bernoulli polynomials involving Chebyshev polynomials J. Comput. Anal. Appl. 16 91-98
[6]  
Acikgoz M.(2012)Some identities involving Gegenbauer polynomials Adv. Differ. Equ. 2012 undefined-undefined
[7]  
Bagdasaryan A.(2012)Hermite polynomials and their applications associated with Bernoulli and Euler numbers Discrete Dyn. Nat. Soc. 2012 undefined-undefined
[8]  
Sen E.(2012)Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials J. Inequal. Appl. 2012 undefined-undefined
[9]  
Dolgy D.V.(2018)Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials Adv. Stud. Contemp. Math. (Kyungshang) 28 undefined-undefined
[10]  
Kim D.S.(2019)Connection problem for sums of finite products of Legendre and Laguerre polynomials Symmetry 11 undefined-undefined