Error bounds for a least squares meshless finite difference method on closed manifolds

被引:0
|
作者
Oleg Davydov
机构
[1] University of Giessen,Department of Mathematics
来源
关键词
RBF-FD; Kernel based methods; PDE on manifolds; Error bounds; Meshless finite difference method; Generalized finite differences; 65N12; 65N15; 65N06;
D O I
暂无
中图分类号
学科分类号
摘要
We present an error bound for a least squares version of the kernel based meshless finite difference method for elliptic differential equations on smooth compact manifolds of arbitrary dimension without boundary. In particular, we obtain sufficient conditions for the convergence of this method. Numerical examples are provided for the equation -ΔMu+u=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _{\mathcal {M}} u + u = f$$\end{document} on the 2- and 3-spheres, where ΔM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\mathcal {M}} $$\end{document} is the Laplace-Beltrami operator.
引用
收藏
相关论文
共 50 条
  • [2] Convergence acceleration of an upwind least squares finite difference based meshless solver
    Sridar, D.
    Balakrishnan, N.
    AIAA Journal, 2006, 44 (10): : 2189 - 2196
  • [3] Convergence acceleration of an upwind least squares finite difference based meshless solver
    Sridar, D.
    Balakrishnan, N.
    AIAA JOURNAL, 2006, 44 (10) : 2189 - 2196
  • [4] Error Estimate and Adaptive Refinement in Mixed Discrete Least Squares Meshless Method
    Amani, J.
    Bagherzadeh, A. Saboor
    Rabczuk, T.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [5] ERROR BOUNDS FOR LEAST SQUARES GRADIENT ESTIMATES
    Turner, Ian W.
    Belward, John A.
    Oqielat, Moa'ath N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 2146 - 2166
  • [6] Error bounds for computed least squares estimators
    Chang, Xiao-Wen
    Kang, Peng
    Titley-Peloquin, David
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 586 : 28 - 42
  • [7] Meshless Galerkin least-squares method
    Pan, XF
    Zhang, X
    Lu, MW
    COMPUTATIONAL MECHANICS, 2005, 35 (03) : 182 - 189
  • [8] Meshless Galerkin least-squares method
    X. F. Pan
    X. Zhang
    M. W. Lu
    Computational Mechanics, 2005, 35 : 182 - 189
  • [9] Least-squares collocation meshless method
    Zhang, XG
    Liu, XH
    Song, KZ
    Lu, MW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 51 (09) : 1089 - 1100
  • [10] Exact a posteriori error analysis of the least squares finite element method
    Liu, JL
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 116 (03) : 297 - 305