On Isometric Immersion of Three-Dimensional Geometries \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\widetilde{SL}_2$$ \end{document}, Nil, and Sol into a Four-Dimensional Space of Constant Curvature

被引:0
作者
L. A. Masal'tsev
机构
[1] Kharkov National University,
关键词
Hyperbolic Space; Constant Curvature; Isometric Immersion; Analytic Immersion;
D O I
10.1007/s11253-005-0206-7
中图分类号
学科分类号
摘要
We prove the nonexistence of an isometric immersion of the geometries Nil3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\widetilde{SL}_2$$ \end{document} into a four-dimensional space Mc4 of constant curvature c. We establish that the geometry Sol3 cannot be immersed into Mc4 for c ≠ −1 and find the analytic immersion of this geometry into the hyperbolic space H4 (−1).
引用
收藏
页码:509 / 516
页数:7
相关论文
共 1 条
  • [1] Borisenko A. A.(2001)Isometric immersions of space forms into Riemannian and pseudo-Riemannian spaces of constant curvature Usp. Mat. Nauk 56 3-78