We prove the nonexistence of an isometric immersion of the geometries Nil3 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\widetilde{SL}_2$$
\end{document} into a four-dimensional space Mc4 of constant curvature c. We establish that the geometry Sol3 cannot be immersed into Mc4 for c ≠ −1 and find the analytic immersion of this geometry into the hyperbolic space H4 (−1).