In this paper, we study the complex Wigner matrices \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$M_{n}=\frac{1}{\sqrt{n}}W_{n}$\end{document} whose eigenvalues are typically in the interval [−2,2]. Let λ1≤λ2⋯≤λn be the ordered eigenvalues of Mn. Under the assumption of four matching moments with the Gaussian Unitary Ensemble (GUE), for test function f 4-times continuously differentiable on an open interval including [−2,2], we establish central limit theorems for two types of partial linear statistics of the eigenvalues. The first type is defined with a threshold u in the bulk of the Wigner semicircle law as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{A}_{n}[f; u]=\sum_{l=1}^{n}f(\lambda_{l})\mathbf{1}_{\{\lambda_{l}\leq u\}}$\end{document}. And the second one is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{B}_{n}[f; k]=\sum_{l=1}^{k}f(\lambda_{l})$\end{document} with positive integer k=kn such that k/n→y∈(0,1) as n tends to infinity. Moreover, we derive a weak convergence result for a partial sum process constructed from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{B}_{n}[f; \lfloor nt\rfloor]$\end{document}. The main difficulty is to deal with the linear eigenvalue statistics for the test functions with several non-differentiable points. And our main strategy is to combine the Helffer-Sjöstrand formula and a comparison procedure on the resolvents to extend the results from GUE case to general Wigner matrices case. Moreover, the results on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{A}_{n}[f;u]$\end{document} for the real Wigner matrices will also be briefly discussed.