Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology

被引:0
|
作者
Jemal Fito
Solomon Tibebu
Thabo T. I. Nkambule
机构
[1] University of South Africa,Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus
[2] Addis Ababa Science and Technology University,Department of Environmental Engineering, College of Biological and Chemical Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence
来源
BMC Chemistry | / 17卷
关键词
Adsorbent; Environment; Effluent; Removal; Pollutant; Treatment performance;
D O I
暂无
中图分类号
学科分类号
摘要
Tannery industries’ effluent contains a high concentration of Cr (VI) which has the potential to affect the environment and public health. Therefore, this study aimed to investigate the optimization of Cr (VI) adsorption by activated carbon (AC) derived from Eichhornia crassipes from an aqueous solution. The adsorbent was activated with dilute sulfuric acid followed by thermal activation. AC was characterized using proximate analysis, SEM, FTIR, X-ray diffraction, and the BET method. The Cr (VI) removal optimization process was performed using a central composite design under the response surface methodology. The proximate analysis showed that the moisture content, volatile matter, ash content, and fixed carbon of the activated carbon were 5.6%, 18.2%, 14.4%, and 61.8% respectively. The surface areas of the Eichhornia crassipes before activation, after activation, and after adsorption were 60.6 g/m2, 794.2 g/m2, and 412.6 g/m2 respectively. A highly porous structure with heterogeneous and irregular shapes was observed in the SEM micrograph. In the FTIR analysis, different peaks are indicated with various functional groups. The intensity of XRD peaks decreased as 2 theta values increased, which indicates the presence of an amorphous carbon arrangement. The point of zero charge (pHpzc) of the activated carbon was found to be 5.20. A maximum Cr (VI) removal of 98.4% was achieved at pH 5, contact time 90 min, adsorbent dose 2 g, and initial Cr (VI) concentration of 2.25 mg/L. Statistically significant interactions (P < 0.05) were observed between the initial Cr (VI) concentration and adsorbent dose as well as the initial Cr (VI) concentration and contact time. Langmuir adsorption isotherm fitted the experimental data best, with an R2 value of 0.99. The separation constant (RL) indicates that the adsorption process is favorable. The kinetic experimental data were best fitted with the pseudo-second-order model with an R2 value of 0.99 whereas the adsorption rate is controlled by intraparticle and extragranular diffusion processes. Generally, the AC has the potential to be a strong adsorbent candidate for wastewater treatment at the industrial level.
引用
收藏
相关论文
共 50 条
  • [32] Enhanced Ciprofloxacin Removal from Aqueous Solution Using a Chemically Modified Biochar Derived from Bamboo Sawdust: Adsorption Process Optimization with Response Surface Methodology
    Wakejo, Wondimu K.
    Meshasha, Beteley T.
    Kang, Joon W.
    Chebude, Yonas
    ADSORPTION SCIENCE & TECHNOLOGY, 2022, 2022
  • [33] Insights into the Adsorption of Cr(VI) on Activated Carbon Prepared from Walnut Shells: Combining Response Surface Methodology with Computational Calculation
    Yazid, Hicham
    Bouzid, Taoufiq
    El Mouchtari, El mountassir
    Bahsis, Lahoucine
    El Himri, Mamoune
    Rafqah, Salah
    El Haddad, Mohammadine
    CLEAN TECHNOLOGIES, 2024, 6 (01): : 199 - 220
  • [34] Adsorption of Cr(VI) from aqueous solution on mesoporous carbon nitride
    Chen, Huan
    Yan, Tingting
    Jiang, Fang
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (04) : 1842 - 1849
  • [35] Exhaustive studies on toxic Cr(VI) removal mechanism from aqueous solution using activated carbon of Aloe vera waste leaves
    Prajapati, Anuj Kumar
    Das, Shridipta
    Mondal, Monoj Kumar
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 307 (307)
  • [36] Removal of Pb(II) from aqueous solution using KCC-1: Optimization by response surface methodology (RSM)
    Hasan, R.
    Setiabudi, H. D.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (04) : 1182 - 1188
  • [37] Functionalized chitosan nanocomposites for removal of toxic Cr (VI) from aqueous solution
    Khalil, Tarek E.
    Elhusseiny, Amel F.
    El-dissouky, Ali
    Ibrahim, Nagwa M.
    REACTIVE & FUNCTIONAL POLYMERS, 2020, 146
  • [38] Significance of co-immobilized activated carbon and Bacillus subtilis on removal of Cr(VI) from aqueous solutions
    Sukumar, C.
    Gowthami, G.
    Nitya, R.
    Janaki, V.
    Kamala-Kannan, Seralathan
    Shanthi, K.
    ENVIRONMENTAL EARTH SCIENCES, 2014, 72 (03) : 839 - 847
  • [39] Removal of Cr(III) and Cr(VI) from aqueous solution by adsorption on sugarcane pulp residue
    Yang Zhi-hui
    Wang Bing
    Chai Li-yuan
    Wang Yun-yan
    Wang Hai-ying
    Su Chang-qing
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2009, 16 (01): : 101 - 107
  • [40] Removal of Cr(III) and Cr(VI) from aqueous solution by adsorption on sugarcane pulp residue
    Zhi-hui Yang
    Bing Wang
    Li-yuan Chai
    Yun-yan Wang
    Hai-ying Wang
    Chang-qing Su
    Journal of Central South University of Technology, 2009, 16 : 101 - 107