Thermal expansion behaviour of barium and strontium zirconium phosphates

被引:0
|
作者
P. Srikari Tantri
K. Geetha
A. M. Umarji
Sheela K. Ramasesha
机构
[1] National Aerospace Laboratories,Materials Science Division
[2] Indian Institute of Science,Materials Research Centre
来源
Bulletin of Materials Science | 2000年 / 23卷
关键词
Coefficient of thermal expansion; low thermal expansion; NZP; ceramic; dilatometer; anisotropy;
D O I
暂无
中图分类号
学科分类号
摘要
Ba1.5-xSrxZr4P5SiO24 compounds withx = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R\bar 3$$ \end{document} space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), withx = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly,x = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign.X = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials
引用
收藏
页码:491 / 494
页数:3
相关论文
共 50 条
  • [41] Thermal expansion of the nanocrystalline titanium diboride
    Kovalev, D. Yu
    Khomenko, N. Yu
    Shilkin, S. P.
    CERAMICS INTERNATIONAL, 2022, 48 (01) : 872 - 878
  • [42] THERMAL EXPANSION OF NANOPOROUS CARBON MATERIAL
    Kompan, T. A.
    Pukhov, N. F.
    Kuznetsov, V. P.
    MEASUREMENT TECHNIQUES, 2010, 53 (01) : 51 - 56
  • [43] Thermal expansion of doped lanthanum gallates
    Jacob, K. T.
    Jain, S.
    Saji, V. S.
    Srikanth, P. V. K.
    BULLETIN OF MATERIALS SCIENCE, 2010, 33 (04) : 407 - 411
  • [44] Thermal expansion of nanoporous carbon material
    T. A. Kompan
    N. F. Pukhov
    V. P. Kuznetsov
    Measurement Techniques, 2010, 53 : 51 - 56
  • [45] Thermal stability and thermal expansion studies of PEEK and related polyimides
    Lu, SX
    Cebe, P
    Capel, M
    POLYMER, 1996, 37 (14) : 2999 - 3009
  • [46] Thermal Conductivity and Thermal Expansion Properties of AIN/EP Composite
    Ma, Zhen-hui
    Huang, Jin-liang
    Gu, Yong-jun
    Jin, Biao
    Chen, Guan-yu
    ADVANCED COMPOSITE MATERIALS, PTS 1-3, 2012, 482-484 : 1410 - 1413
  • [47] Thermal expansion behavior of copper matrix composite containing negative thermal expansion PbTiO3 particles
    Sheng, J.
    Wang, L. D.
    Li, D.
    Cao, W. P.
    Feng, Y.
    Wang, M.
    Yang, Z. Y.
    Zhao, Y.
    Fei, W. D.
    MATERIALS & DESIGN, 2017, 132 : 442 - 447
  • [48] High-temperature thermoelectric characterization of filled strontium barium niobates: power factors and carrier concentrations
    Chan, Jason H.
    Bock, Jonathan A.
    Guo, Hanzheng
    Trolier-McKinstry, Susan
    Randall, Clive A.
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (06) : 1160 - 1167
  • [49] Thermal expansion of doped lanthanum gallates
    K. T. Jacob
    S. Jain
    V. S. Saji
    P. V. K. Srikanth
    Bulletin of Materials Science, 2010, 33 : 407 - 411
  • [50] Comparison of material properties between ultra low thermal expansion ceramics and conventional low thermal expansion glass
    Kamiya, Tomohiro
    Mizutani, Tadahito
    MATERIAL TECHNOLOGIES AND APPLICATIONS TO OPTICS, STRUCTURES, COMPONENTS, AND SUB-SYSTEMS III, 2017, 10372