On existence of a universal function for Lp[0, 1] with p∈(0, 1)

被引:0
作者
M. G. Grigoryan
A. A. Sargsyan
机构
[1] Yerevan State University,
[2] Synchrotron Research Institute CANDLE,undefined
来源
Siberian Mathematical Journal | 2016年 / 57卷
关键词
universal function; Fourier coefficient; Walsh system; convergence in a metric;
D O I
暂无
中图分类号
学科分类号
摘要
We show that, for every number p ∈ (0, 1), there is g ∈ L1[0, 1] (a universal function) that has monotone coefficients ck(g) and the Fourier–Walsh series convergent to g (in the norm of L1[0, 1]) such that, for every f ∈ Lp[0, 1], there are numbers δk = ±1, 0 and an increasing sequence of positive integers Nq such that the series ∑ k=0+∞δkck(g)Wk (with {Wk} theWalsh system) and the subsequence σNq(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{{N_q}}^{\left( \alpha \right)}$$\end{document}, α ∈ (−1, 0), of its Cesáro means converge to f in the metric of Lp[0, 1].
引用
收藏
页码:796 / 808
页数:12
相关论文
共 22 条
[1]  
Galoyan L. N.(2012)On convergence of negative order Césaro means of the Fourier–Walsh series in Lp (p > 1) metrics J. Contemp. Math. Anal. 47 134-147
[2]  
Birkhoff G. D.(1929)Démonstration d’un théoréme élémentaire sur les fonctions entiéres C. R. Acad. Sci. Paris 189 473-475
[3]  
MacLane G. R.(1952)Sequences of derivatives and normal families J. Anal. Math. 2 72-87
[4]  
Grosse-Erdmann K. G.(1987)Holomorphe Monster und universelle Funktionen Mitt. Math. Sem. Giessen., Bd 176 1-84
[5]  
Joó I.(1989)On the divergence of eigenfunction expansions Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 32 3-36
[6]  
Men’shov D. E.(1945)On universal trigonometric series Dokl. Akad. Nauk SSSR 49 79-82
[7]  
Men’shov D. E.(1964)Universal sequences of functions Mat. Sb. 65 272-312
[8]  
Talalyan A. A.(1960)The representation of measurable functions by series Russian Math. Surveys 15 75-136
[9]  
Talalyan A. A.(1960)On the universal series with respect to rearrangements Izv. Akad. Nauk Armyan. SSR Ser. Mat. 24 567-604
[10]  
Ul’yanov P. L.(1972)Representation of functions by series and classes ?(L) Russian Math. Surveys 27 1-54